pytorch基础练习和螺旋数据分类的代码练习

本文通过PyTorch介绍了张量操作基础,并详细展示了如何使用matplotlib生成图像,构建线性和两层神经网络对螺旋数据进行分类,讨论了线性模型与ReLU激活函数在复杂任务中的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、pytorch基础练习

PyTorch是一个python库,提供:

  • GPU加速的张量计算
  • 构建在反向自动求导系统上的深度神经网络

两个高级功能。一般定义数据使用torch.Tensor , tensor的意思是张量,是数字各种形式的总称

import torch

# 可以是一个数
x = torch.tensor(666)
print(x)

torch可以是任意维度的数组,且支持各种各样类型的数据(如torch.float32, torch.float64, torch.uint8, torch.int8, torch.int32等等):


# 可以是一维数组(向量)
x = torch.tensor([1,2,3,4,5,6])
print(x)


# 可以是二维数组(矩阵)
x = torch.ones(2,3)
print(x)

# 可以是任意维度的数组(张量)
x = torch.ones(2,3,4)
print(x)

创建Tensor有多种方法,包括:ones, zeros, eye, arange, linspace, rand, randn, normal, uniform, randperm, 使用的时候可以在线搜

二、螺旋数据分类

1.matplotlib生成图像

Matplotlib 是一个综合性的库,用于在 Python 中创建静态、动画

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值