买卖股票的状态
dp[i][k][0 or 1]
0 <= i <= n - 1, 1 <= k <= K
n 为天数,大 K 为交易数的上限,0 和 1 代表是否持有股票。
此问题共 n × K × 2 种状态,全部穷举就能搞定。
for 0 <= i < n:
for 1 <= k <= K:
for s in {0, 1}:
dp[i][k][s] = max(buy, sell, rest)
这个问题的「状态」有三个:
第一个是天数
第二个是允许交易的最大次数
第三个是当前的持有状态(用 1 表示持有,0 表示没有持有)
状态转移
今天我没有持有股票,有两种可能,我从这两种可能中求最大利润:
1、我昨天就没有持有,且截至昨天最大交易次数限制为 k;然后我今天选择 rest,所以我今天还是没有持有,最大交易次数限制依然为 k。
2、我昨天持有股票,且截至昨天最大交易次数限制为 k;但是今天我 sell 了,所以我今天没有持有股票了,最大交易次数限制依然为 k。
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
max( 今天选择 rest, 今天选择 sell )
今天我持有着股票,最大交易次数限制为 k,那么对于昨天来说,有两种可能,我从这两种可能中求最大利润
1、我昨天就持有着股票,且截至昨天最大交易次数限制为 k;然后今天选择 rest,所以我今天还持有着股票,最大交易次数限制依然为 k。
2、我昨天本没有持有,且截至昨天最大交易次数限制为 k - 1;但今天我选择 buy,所以今天我就持有股票了,最大交易次数限制为 k。
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
max( 今天选择 rest, 今天选择 buy )
K的定义
时刻牢记「状态」的定义,状态 k 的定义并不是「已进行的交易次数」,而是「最大交易次数的上限限制」。
如果确定今天进行一次交易,且要保证截至今天最大交易次数上限为 k,那么昨天的最大交易次数上限必须是 k - 1
base case
dp[-1][...][0] = 0 解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0。
dp[-1][...][1] = -infinity 解释:还没开始的时候,是不可能持有股票的。因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。
dp[...][0][0] = 0 解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0。
dp[...][0][1] = -infinity 解释:不允许交易的情况下,是不可能持有股票的。因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。
分类
一次买卖k=1
(1)动态规划:
class Solution {
public int maxProfit(int[] prices) {
int n=prices.length;
if(prices==null||n==0)return 0;
int[][]dp = new int[n][2];
//base case
dp[0][0]=0;
dp[0][1]=-prices[0];
for(int i=1;i<n;i++){
dp[i][0] = Math.max(dp[i-1][1]+prices[i],dp[i-1][0]);
dp[i][1]=Math.max(dp[i-1][1],-prices[i]);//!!!!!注意这里,因为只有一次买入的机会,所以这唯一一次买入之前的利润绝对是0
}
return dp[n-1][0];
}
}
(2)【贪心】思路:只要找到最低点买入、最高点卖出:
class Solution {
public int maxProfit(int[] prices) {
int minPrice=Integer.MAX_VALUE;
int maxProfitRes = 0;
for(int p:prices){
minPrice=Math.min(minPrice,p);
maxProfitRes=Math.max(maxProfitRes,p-minPrice);
}
return maxProfitRes;
}
}
K无限次
1.K=无限次,无其他限制
(1)动态规划
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int[][] dp = new int[n][2];
dp[0][0] = 0;
dp[0][1] = -prices[0];
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
}
return dp[n - 1][0];
}
}
(2)【贪心】
因为交易次数不受限,只要股票 今天涨价了,我们就可以把差价赚到:
- 如果
prices[i] > prices[i-1],就把prices[i] - prices[i-1]加到利润里。 - 因为这是在模拟“低买高卖”,等价于把所有上升区间的利润累加。
这样做的好处: - 不用管买入和卖出的具体时机,因为所有上涨的部分我们都会赚到。
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
int res = 0;
for (int i = 1; i < n; i++) {
if (prices[i] > prices[i-1]) {
res += prices[i] - prices[i-1];
}
}
return res;
}
}
2.k 为正无穷,但含有交易冷冻期(有第三个状态参与到了状态转移)
为什么需要dp?
- 在“无限次交易”时,只要有涨幅就可以立刻卖掉,因为没有限制。
- 但这题有 冷冻期 1 天:
- 你卖出之后,第二天不能买入。
- 所以你不能只看今天涨没涨,还要看冷冻期的限制,带来未来决策的依赖。
- 贪心只看眼前,做不到全局最优 → 所以要用 DP。
class Solution {
public int maxProfit(int[] prices) {
int n = prices.length;
if (n == 0) return 0;
int[][] dp = new int[n][3];
dp[0][0] = 0;
dp[0][1] = -prices[0];
dp[0][2] = 0;
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][2]);//今天 没有持股,并且 今天没卖股票(可能是休息)
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);//今天 持股
dp[i][2] = dp[i-1][1] + prices[i];//今天 没有持股,并且 今天刚卖掉股票
}
return Math.max(dp[n-1][0], dp[n-1][2]);
}
}
3.k 为正无穷,但有手续费(based onK为正无穷无限制)
为什么用dp?
- 如果没有手续费,可以用贪心:每次有涨幅就卖出,累计所有正收益。
- 但有手续费后,卖股票的时机会影响总利润:
- 过早卖出 → 手续费扣太多 → 总利润低
- 太晚卖出 → 可能错过更大的涨幅
- 这就变成了一个 全局最优问题,不能用贪心,必须用 动态规划,让程序自动在所有可能的交易方案里找出最优解。
class Solution {
public int maxProfit(int[] prices, int fee) {
int n = prices.length;
if (n == 0) return 0;
int[][] dp = new int[n][2];
dp[0][0] = 0;
dp[0][1] = -prices[0];
for (int i = 1; i < n; i++) {
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i] - fee);
dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
}
return dp[n-1][0];
}
}
K有限制【增加了一个状态】
为什么要有第三个维度
因为:
- 只用
dp[i][0/1]时,无法限制交易次数。 - 第三维
k记录了你还剩多少次交易机会,确保每次买入都会消耗一次交易。
注意:K为什么从后往前减小
K 倒序 = 保证每次买入都用昨天完成的交易数,而不是今天刚更新过的。
dp[i][k][0] → 第 i 天,最多允许 k 笔交易,手里 【没有】 股票 的最大利润
dp[i][k][1] → 第 i 天,最多允许 k 笔交易,手里 【有】 股票 的最大利润
K为某target
class Solution {
public int maxProfit(int K, int[] prices) {
int n = prices.length;
if (n == 0) return 0;
int[][][] dp = new int[n][K+1][2];
// 初始化
for (int k = 1; k <= K; k++) {
dp[0][k][0] = 0;
dp[0][k][1] = -prices[0];
}
for (int i = 1; i < n; i++) {
for (int k = K; k >= 1; k--) {
dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);//要在这天买入,前一天的最大交易次数就是k-1
}
}
return dp[n-1][K][0];
}
}
218

被折叠的 条评论
为什么被折叠?



