算法——买卖股票

买卖股票的状态

dp[i][k][0 or 1]
0 <= i <= n - 1, 1 <= k <= K
n 为天数,大 K 为交易数的上限,0 和 1 代表是否持有股票。
此问题共 n × K × 2 种状态,全部穷举就能搞定。

for 0 <= i < n:
    for 1 <= k <= K:
        for s in {0, 1}:
            dp[i][k][s] = max(buy, sell, rest)

这个问题的「状态」有三个
第一个是天数
第二个是允许交易的最大次数
第三个是当前的持有状态(用 1 表示持有,0 表示没有持有)

状态转移

今天我没有持有股票,有两种可能,我从这两种可能中求最大利润:

1、我昨天就没有持有,且截至昨天最大交易次数限制为 k;然后我今天选择 rest,所以我今天还是没有持有,最大交易次数限制依然为 k
2、我昨天持有股票,且截至昨天最大交易次数限制为 k;但是今天我 sell 了,所以我今天没有持有股票了,最大交易次数限制依然为 k

dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
              max( 今天选择 rest,        今天选择 sell       )
今天我持有着股票,最大交易次数限制为 k,那么对于昨天来说,有两种可能,我从这两种可能中求最大利润

1、我昨天就持有着股票,且截至昨天最大交易次数限制为 k;然后今天选择 rest,所以我今天还持有着股票,最大交易次数限制依然为 k
2、我昨天本没有持有,且截至昨天最大交易次数限制为 k - 1;但今天我选择 buy,所以今天我就持有股票了,最大交易次数限制为 k

dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
              max( 今天选择 rest,         今天选择 buy         )
K的定义

时刻牢记「状态」的定义,状态 k 的定义并不是「已进行的交易次数」,而是「最大交易次数的上限限制」。
如果确定今天进行一次交易,且要保证截至今天最大交易次数上限为 k,那么昨天的最大交易次数上限必须是 k - 1

base case
dp[-1][...][0] = 0 解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0。


dp[-1][...][1] = -infinity 解释:还没开始的时候,是不可能持有股票的。因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。


dp[...][0][0] = 0 解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0。


dp[...][0][1] = -infinity 解释:不允许交易的情况下,是不可能持有股票的。因为我们的算法要求一个最大值,所以初始值设为一个最小值,方便取最大值。


分类

一次买卖k=1

(1)动态规划:


class Solution {
    public int maxProfit(int[] prices) {
        int n=prices.length;
        if(prices==null||n==0)return 0;
        int[][]dp = new int[n][2];
        //base case
        dp[0][0]=0;
        dp[0][1]=-prices[0];
        for(int i=1;i<n;i++){
            dp[i][0] = Math.max(dp[i-1][1]+prices[i],dp[i-1][0]);
            dp[i][1]=Math.max(dp[i-1][1],-prices[i]);//!!!!!注意这里,因为只有一次买入的机会,所以这唯一一次买入之前的利润绝对是0
        }
        return dp[n-1][0];
    }
}

(2)【贪心】思路:只要找到最低点买入、最高点卖出:

class Solution {
    public int maxProfit(int[] prices) {
        int minPrice=Integer.MAX_VALUE;
        int maxProfitRes = 0;
        for(int p:prices){
            minPrice=Math.min(minPrice,p);
            maxProfitRes=Math.max(maxProfitRes,p-minPrice);
        }
        return maxProfitRes;
    }
}


K无限次

1.K=无限次,无其他限制

(1)动态规划

class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int[][] dp = new int[n][2];
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        for (int i = 1; i < n; i++) {
            dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
        }
        return dp[n - 1][0];
    }
}

(2)【贪心】
因为交易次数不受限,只要股票 今天涨价了,我们就可以把差价赚到:

  • 如果 prices[i] > prices[i-1],就把 prices[i] - prices[i-1] 加到利润里。
  • 因为这是在模拟“低买高卖”,等价于把所有上升区间的利润累加
    这样做的好处:
  • 不用管买入和卖出的具体时机,因为所有上涨的部分我们都会赚到。
class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        int res = 0;
        for (int i = 1; i < n; i++) {
            if (prices[i] > prices[i-1]) {
                res += prices[i] - prices[i-1];
            }
        }
        return res;
    }
}

2.k 为正无穷,但含有交易冷冻期(有第三个状态参与到了状态转移)

为什么需要dp?

  • 在“无限次交易”时,只要有涨幅就可以立刻卖掉,因为没有限制。
  • 但这题有 冷冻期 1 天
    • 你卖出之后,第二天不能买入。
    • 所以你不能只看今天涨没涨,还要看冷冻期的限制,带来未来决策的依赖。
  • 贪心只看眼前,做不到全局最优 → 所以要用 DP。
class Solution {
    public int maxProfit(int[] prices) {
        int n = prices.length;
        if (n == 0) return 0;

        int[][] dp = new int[n][3];
        dp[0][0] = 0;
        dp[0][1] = -prices[0];
        dp[0][2] = 0;

        for (int i = 1; i < n; i++) {
            dp[i][0] = Math.max(dp[i-1][0], dp[i-1][2]);//今天 没有持股,并且 今天没卖股票(可能是休息)
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);//今天 持股
            dp[i][2] = dp[i-1][1] + prices[i];//今天 没有持股,并且 今天刚卖掉股票
        }

        return Math.max(dp[n-1][0], dp[n-1][2]);
    }
}

3.k 为正无穷,但有手续费(based onK为正无穷无限制)

为什么用dp?

  • 如果没有手续费,可以用贪心:每次有涨幅就卖出,累计所有正收益。
  • 但有手续费后,卖股票的时机会影响总利润:
    • 过早卖出 → 手续费扣太多 → 总利润低
    • 太晚卖出 → 可能错过更大的涨幅
  • 这就变成了一个 全局最优问题,不能用贪心,必须用 动态规划,让程序自动在所有可能的交易方案里找出最优解。
class Solution {
    public int maxProfit(int[] prices, int fee) {
        int n = prices.length;
        if (n == 0) return 0;

        int[][] dp = new int[n][2];
        dp[0][0] = 0;
        dp[0][1] = -prices[0];

        for (int i = 1; i < n; i++) {
            dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i] - fee);
            dp[i][1] = Math.max(dp[i-1][1], dp[i-1][0] - prices[i]);
        }

        return dp[n-1][0];
    }
}



K有限制【增加了一个状态】

为什么要有第三个维度

因为:

  • 只用 dp[i][0/1] 时,无法限制交易次数。
  • 第三维 k 记录了你还剩多少次交易机会,确保每次买入都会消耗一次交易。
注意:K为什么从后往前减小

K 倒序 = 保证每次买入都用昨天完成的交易数,而不是今天刚更新过的。

dp[i][k][0] → 第 i 天,最多允许 k 笔交易,手里 【没有】 股票 的最大利润
dp[i][k][1] → 第 i 天,最多允许 k 笔交易,手里 【有】 股票 的最大利润

K为某target

class Solution {
    public int maxProfit(int K, int[] prices) {
         int n = prices.length;
        if (n == 0) return 0;
        int[][][] dp = new int[n][K+1][2];
        // 初始化
        for (int k = 1; k <= K; k++) {
            dp[0][k][0] = 0;
            dp[0][k][1] = -prices[0];
        }

        for (int i = 1; i < n; i++) {
            for (int k = K; k >= 1; k--) {
                dp[i][k][0] = Math.max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
                dp[i][k][1] = Math.max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);//要在这天买入,前一天的最大交易次数就是k-1
            }
        }

        return dp[n-1][K][0];
    }
}

### 动态规划解决股票买卖问题 动态规划是一种有效的算法方法,用于求解具有重叠子问题和最优子结构性质的问题。对于股票买卖问题,可以通过动态规划找到最佳的买入和卖出时机以最大化利润。 #### 1. 状态定义 设 `prices` 是一个长度为 `n` 的数组,表示每天的股票价格。我们可以定义两个状态变量: - `dp[i][0]`: 表示第 `i` 天不持有股票时的最大利润。 - `dp[i][1]`: 表示第 `i` 天持有股票时的最大利润。 初始条件如下: - 第一天如果不持有股票,则 `dp[0][0] = 0`。 - 第一天如果持有股票,则 `dp[0][1] = -prices[0]`,因为购买股票会花费资金[^1]。 #### 2. 状态转移方程 根据每一天的状态变化,可以得出以下转移方程: - 如果第 `i` 天不持有股票,可能是前一天也不持有或者前一天持有但在今天卖出了: \[ dp[i][0] = \max(dp[i-1][0], dp[i-1][1] + prices[i]) \] - 如果第 `i` 天持有股票,可能是前一天就已经持有了或者前一天未持有而在今天买进了: \[ dp[i][1] = \max(dp[i-1][1], -prices[i]) \] 最终的结果存储在 `dp[n-1][0]` 中,即最后一天不持有股票时的最大利润[^3]。 #### 3. Python 示例代码 以下是基于上述逻辑的一个简单实现: ```python def maxProfit(prices): if not prices or len(prices) < 2: return 0 n = len(prices) dp = [[0]*2 for _ in range(n)] # 初始化第一天的状态 dp[0][0] = 0 # 不持股 dp[0][1] = -prices[0] # 持股 # 遍历每一天并更新状态 for i in range(1, n): dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i]) # 当前不持股 dp[i][1] = max(dp[i-1][1], -prices[i]) # 当前持股 return dp[-1][0] # 返回最后一天不持股时的最大利润 ``` 此代码的时间复杂度为 \(O(n)\),空间复杂度也为 \(O(n)\)[^4]。为了优化空间复杂度,还可以进一步简化为只使用常量级别的额外空间。 #### 4. 进一步优化的空间复杂度版本 由于每次状态仅依赖于上一时刻的状态,因此可以用滚动数组的方式减少内存消耗: ```python def maxProfit_optimized(prices): if not prices or len(prices) < 2: return 0 prev_not_hold, prev_hold = 0, float('-inf') for price in prices: temp = prev_not_hold prev_not_hold = max(prev_not_hold, prev_hold + price) prev_hold = max(prev_hold, -price) return prev_not_hold ``` 这种优化后的代码时间复杂度仍为 \(O(n)\),而空间复杂度降到了 \(O(1)\)[^5]。 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值