主成分分析

用较少的变量去解释原来资料中的大部分变异,将相关性很高的变量转化成彼此相互独立或不相关的变量。通常是选出比原始变量个数少,能解释大部分资料中的变异的几个新变量,即所谓主成分,并用以解释资料的综合性指标。

主成分分析法的过程,它是一个构造转换矩阵的过程。

a.对变量矩阵X进行均值归零处理

b.求协方差矩阵M = X’X/m(m是X的行数,也就是有多少个变量)

c.求出协方差矩阵的特征值和特征向量,特征向量组成的矩阵就是变换矩阵

d.将特征向量按照特征值大小进行排序,组成矩阵p

e.Y = XP得到最后的变换的数据

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值