Magic Potion(网络流,二分图)

题意:有n个英雄, m个怪兽, k瓶药水, 每个英雄都有一个它可以杀的怪物集合, 但只能杀一个, 但如果喝了药水就可以再杀一个,注意每个怪物只能死一次, 每个英雄只能喝一瓶药水。问英雄们最多杀多少怪物。

大概思路:网络流模板题, 只要建出图就可以得到答案,
设置虚点p
S ~P 流量为 k
P~每个英雄 1
S~每个英雄 1
每个英雄~能杀的怪兽集合1
怪兽~终点1
重点:不能S~P n + k, 然后 p ~ 每个英雄 2, 因为这样会导致有可能超过k个人发出了大小为2的流量,与题意不和
细节见于代码

#include<iostream>
#include<cstring>
#include<algorithm>

using namespace std;

const int N = 2e4 + 10, M = 5e4 + 10, INF = 1e9 + 12;
int n, m, S, T, k;
int h[N], e[M], f[M], ne[M], idx;
int q[N], d[N], cur[N];

void add(int a, int b, int c)
{
    e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx ++;
    e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx ++;
}

bool bfs()
{
    int hh = 0, tt = 0;
    memset(d, -1, sizeof d);
    q[0] = S, d[S] = 0, cur[S] = h[S]; //cur当前弧优化存的是S点对应的下一层的点的可能可用的第一个边的编号
    while(hh <= tt)
    {
        int t = q[hh ++];
        for(int i = h[t]; ~i; i = ne[i])
        {
            int ver = e[i];
            if(d[ver] == -1 && f[i])
            {
                d[ver] = d[t] + 1;
                cur[ver] = h[ver];
                if(ver == T) return true;
                q[++ tt] = ver;
            }
        }
    }
    return false;
}

int find(int u, int limit)
{
    if(u == T) return limit;
    int flow = 0;
    for(int i = cur[u]; ~i && flow < limit; i = ne[i])
    {
        cur[u] = i;//当前弧优化
        int ver = e[i];
        if(d[ver] == d[u] + 1 && f[i])
        {
            int t = find(ver, min(f[i], limit - flow));
            if(!t) d[ver] = -1;
            f[i] -= t, f[i^1] += t, flow += t;
        }
    }
    return flow;
}
int dinic()
{
    int r = 0, flow;
    while(bfs()) while(flow = find(S, INF)) r += flow;
    return r;
}
int main()
{
//    freopen("C:\\Users\\86183\\Desktop\\out.TXT","r", stdin);
//    freopen("C:\\Users\\86183\\Desktop\\in.TXT","wb", stdout);
    while(~scanf("%d%d%d", &n, &m, &k))
    {
        memset(h, -1, sizeof h);
        idx = 0;
        int sum = n + m;
        S = sum + 1, T = sum + 2;
        int P = sum + 3;
        add(S, P, k);
        for(int i = 1; i <= n; i ++)
        {
            int t;
            scanf("%d", &t);
            for(int j = 1; j <= t; j ++)
            {
                int x;
                scanf("%d", &x);
                add(i, n + x, 1);
            }
        }
        for(int i = 1; i <= n; i++)
            add(S, i, 1), add(P, i, 1);
        for(int i = n + 1; i <= n + m; i ++)
        {
            add(i, T, 1);
        }
        printf("%d\n", dinic());
    }
    return 0;
}

匈牙利匹配

#include <bits/stdc++.h>

using namespace std;

const int N = 505;
int n, m, k, a[N * 2][N], b[N], girl[N];


bool find(int x)
{
    for(int j = 1; j <= m; j ++)
    {
        if(a[x][j] == 1 && b[j] == 0)
        {
            b[j] = 1;
            if(girl[j] == 0 || find(girl[j]))
            {
                girl[j] = x;
                return true;
            }
        }
    }
    return false;
}

int main()
{
    cin >> n >> m >> k;
    for(int i = 1; i <= n; i++)
    {
        int s, x;
        cin >> s;
        for(int j = 1; j <= s; j ++)
        {
            scanf("%d", &x);
            a[i][x] = 1;
            a[i + n][x] = 1;
        }
    }
    int sum = 0, sum1 = 0;
    for(int i = 1; i <= n * 2; i ++)
    {
        memset(b, 0, sizeof b);
        if(find(i))
        {
            if(i <= n) sum ++;
            else sum1 ++;
        }
    }
    cout << sum + min(k, sum1) << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值