PyTorch环境的配置及安装问题
(base) PS什么意思?教程里面是Anaconda Powershell我的是Anaconda Powershell Prompt的,但是查了别人使用这个,应该也可以,但是(base)环境,基础环境,中PS是设么?person个人?
- windows10怎样查看设备管理器?
搜索->设备显示器->打开
- windows怎样查看显卡?
搜索->设备显示器->打开->显示适配器
- inter® UHD Graphics 620和NVIDIA Gdforce MX150那个是显卡?
俩都是不过前者集成显卡后者独立显卡
安装环境后出现问题CondaError: Downloaded bytes did not match Content-Leng
因一般是在下载的时候速度较慢,导致下载timeout而终止。
出现问题CondaError: Downloaded bytes did not match Content-Leng
解决方法
Anaconda中安装Pytorch 速度太慢解决办法
遇到的问题描述:
无法将“D:\Anaconda\Scripts\conda.exe”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。请检查名称的拼写,如果包
括路径,请确保路径正确,然后再试一次。
所在位置 C:\Users\xuanw\Documents\WindowsPowerShell\profile.ps1:4 字符: 4
- (& “D:\Anaconda\Scripts\conda.exe” “shell.powershell” “hook”) | Out-S …
-
+ CategoryInfo : ObjectNotFound: (D:\Anaconda\Scripts\conda.exe:String) [], CommandNotFoundException
+ FullyQualifiedErrorId : CommandNotFoundException
解决环境变量问题:
1.右键“此电脑”,左键单击“属性”,选择“高级系统设置”->“环境变量”->“系统变量”->“path”->“编辑”。
Anaconda配置环境变量。√
问题:
Traceback (most recent call last):
File “”, line 1, in
ModuleNotFoundError: No module named ‘torch’
ModuleNotFoundError: No module named ‘torch‘ 解决方案
Unresolved reference(未解析的引用)——解决Pycharm无法导入包问题
pip install ConfigParser
yolov5参数的一些解释
weight 使用那种方式yolov5s、l、m source 图片从哪里来,文件夹、文件名
data ???
imgsz 在运行过程中缩放图片
conf-thres 测试概率高于多少才显示
iou-det 多个框框选同个物品,iou值大于多少时才显示
max-det device 使用哪种cuda或者cpu view-img 是否运行期间查看
save-txt 运行相关文本是否保存
save-conf
class 哪一类保存0.1.2
agnostic-nms 增强的NMS
augment 增强
visualize
update
project结果保存在哪里
name 保存结果名字
exist-ok 是否另存在一个新文件夹中
如何训练yolov5
出现问题yolov5 pytorch
Traceback (most recent call last): File “D:/Program Files (x86)/yolov5/yolov5-master/train.py”, line 67, in
GIT_INFO = check_git_info() File “D:\Program Files (x86)\Anaconda3\envs\pytorch\lib\contextlib.py”, line 75, in inner
**return func(*args, kwds) File “D:\Program Files (x86)\yolov5\yolov5-master\utils\general.py”, line 360, in
check_git_info
import git File “D:\Program Files (x86)\Anaconda3\envs\pytorch\lib\site-packages\git_init_.py”, line
91, in
raise ImportError(“Failed to initialize: {0}”.format(exc)) from excImportError: Failed to initialize: Bad git executable. The git executable must be specified in one of the following ways:
- be included in your $PATH
- be set via $GIT_PYTHON_GIT_EXECUTABLE
- explicitly set via git.refresh()All git commands will error until this is rectified. 在纠正之前,所有git命令都将出错。
This initial warning can be silenced or aggravated in the future by
setting the $GIT_PYTHON_REFRESH environment variable. Use one of the
following values:
- quiet|q|silence|s|none|n|0: for no warning or exception
- warn|w|warning|1: for a printed warning
- error|e|raise|r|2: for a raised exceptionExample:
export GIT_PYTHON_REFRESH=quietProcess finished with exit code 1**
解决:解决ImportError: Bad git executable.
train设置
–weight 可以填Yolov5s.pt yolov5x.pt yolov5m.pt yolov5l.pt
–cfg 模型参数设置对应.yaml(config) 模型参数设置
–data coco coco128 voc argoverse date文件夹下 从哪里卸载coco数据集
–hyp 模型微调 无需改成方形 长方形也可
–epochs 训练多少轮
–img-size 训练时图片多大
–rect 参数
–resume 之前训练过程设置模型地址或者false
–nosave
–notest
–noautoanchar 锚点锚框
–evolve 去寻找最优参数的方式
–bucket
–cache-image 是否缓存
–image-weight 上个训练效果不咋好,下个训练对图片多处理
–device 指定那个使用那个cuda
–multi-scale 图片变换
–single-cls 训练数据集单类别还是多类别
–adam 随机xx下降
–sync-bn 多个GPU
–local-rank DDP参数
–workers
–project 保存在哪里
–entity 库w&b
–name 保存在那个文件夹
–exist-ok
–quad 数据加载 在大于640上的图片效果更好
–linear-lr 学习速率 线性方式、余弦方式
–label-smoothing 分类算法过滤和?
–save_period fwandb处理-1关
–artifact-alias 作者没实现
自制数据集及训练
手工标注
更改data地址,新写一个.yaml文件,标明train、val