题目:给定一个整数 n,生成所有由 1 … n 为节点所组成的二叉搜索树。
代码
class Solution {
public List<TreeNode> generateTrees(int n) {
if (n == 0) return new ArrayList<>();
return helper(1, n);
}
private List<TreeNode> helper(int start, int end) {
List<TreeNode> res = new ArrayList<>();
if (start > end) {
res.add(null);
return res;
}
for (int val = start; val <= end; val++) //选择每一个数字作为根节点的循环
{
List<TreeNode> left = helper(start, val - 1);//构建左子树
List<TreeNode> right = helper(val + 1, end);//构建右子树
for (TreeNode l : left) {
for (TreeNode r : right) { //
TreeNode root = new TreeNode(val);
root.left = l;
root.right = r;
res.add(root);
}
}
}
return res;
}
}
自顶向下递归解决, 二叉搜索树的左孩子一定小于根结点,右孩子一定大于根节点。help函数最终返回的一定是传值范围内所有可能的二叉搜索树,明确这一点,有助于递归函数的构建。
设计思路:
1.我们要生成树,那么应该轮流选择每一个节点作为根结点。见代码注释
2.该节点的左孩子,应该是比它小的所有值构建的二叉搜索树,右孩子则是所有比它大的值构建的二叉搜索树,那么对于help函数,比他小的值区间为start至i-1的范围,比他大的值区间为i+1至end的范围,故传值范围见代码。
3.列表left中代表以i为根结点,其左子树的所有可能,所以我们使用foreach循环,遍历每一个可能,右节点同理,我们将每一种可能性组合,添加为root的左右孩子,那么每次循环就构建了一棵可能的二叉搜索树,将其根节点root置于res中,最终返回res即可。