题目:汽车从起点出发驶向目的地,该目的地位于出发位置东面 target 英里处。
沿途有加油站,每个 station[i] 代表一个加油站,它位于出发位置东面 station[i][0] 英里处,并且有 station[i][1] 升汽油。
假设汽车油箱的容量是无限的,其中最初有 startFuel 升燃料。它每行驶 1 英里就会用掉 1 升汽油。
当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。
为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1 。
注意:如果汽车到达加油站时剩余燃料为 0,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0,仍然认为它已经到达目的地。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/minimum-number-of-refueling-stops
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
代码
class Solution {
public int minRefuelStops(int target, int startFuel, int[][] stations) {
PriorityQueue<Integer> queue = new PriorityQueue<>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2-o1;
}
});//创建最大堆 重写compare方法,默认为最小堆
if (startFuel>=target)//如果开始油量能直接到达
return 0;
if (stations.length==0)//在上条件下,没有加油站
return -1;
int count =0; //标记
int x =0; //加油次数
int dangqian =startFuel; //当前油量
while (dangqian<target)//当前油量无法抵达时继续循环
{
if (dangqian >=stations[count][0])
{//当前油量能够抵达count位置的加油站
queue.add(stations[count][1]);//将加油站的油量存储到最大堆中
count++;
}
else
{//当前油量无法抵达count位置加油站
if (queue.isEmpty())
{ //如果堆中没有油量,则无法抵达终点
return -1;
}
dangqian +=queue.poll();//取出堆中最大油量
x++;
}
if (count==stations.length&&(!queue.isEmpty()))
{//如果抵达了最后一个加油站且堆不为空
while (!queue.isEmpty())
{ //取出堆顶元素加入当前油量,直到抵达终点
dangqian+=queue.poll();
x++;
if (dangqian>=target)
return x;
}
}
if (count==stations.length&&queue.isEmpty())
return -1;//取出了所有元素后仍然无法抵达
}
return x;
}
}
我们创建一个最大堆,如果当前油量能够到达一个加油站,那么将它存储进堆中,如果无法抵达这个加油站,我们取出前面存储过的加油站中油量最多的一个,把它加到当前的油量中,直到抵达目的地。
注意:
1.创建最大堆需要重写compare方法。
2.循环过程中,如果我们已经抵达了最后一个加油站,我们不会继续取出元素,所以需要单独设置一个判断。