生成元java

描述
如果x加上x的各个数字之和得到y,就说x是y的生成元。给出n(1小于等于n小于等于100000),求最小生成元。无解输出0.例如,n=216,121,2005时的解分别为198,0,1979.

分析
1.计算n的位数
2.从n-n的位数*9开始循环,到n

解法一

分析

1.计算n的位数
2.从n-n的位数*9开始循环,到n
import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
		int T=sc.nextInt();
		while(T>0){
			T--;
			int n=sc.nextInt();
			int num=1;//得到n的位数
			int t1=n;//临时临时变量t1,如果直接用n,n的值会被改变,后面就会出错
			while(t1/10!=0) {//如果t1/10不等于0,就位数+1
				t1/=10;
				num++;
			}
			int flag=0;//标志是否有解
			for (int i = n-num*9; i <= n; i++) {//循环,直接从n-位数*9开始,生成元不可能小于这个数
				int sum=0;//存放生成元各个数字之和
				int t2=i;//临时变量
				while(t2!=0) {//计算每一位数字,然后加在sum里
					sum+=t2%10;
					t2/=10;
				}
				if(sum+i==n) {//有解直接输出,然后break;
					System.out.println(i);
					flag=1;//标志是否有解,flag=1有解
					break;
					}
			}
			if(flag==0) {//无解输出0
				System.out.println(0);
			}
		}
		
	}
}

解法二

分析

假设所求生成元为m。不难发现m<n。即只需枚举所有的m<n,看看有没有哪个数是n的生成元。

但是,这样做效率较低。因为每一次计算一个n的生成元都需要枚举n-1个数。

更好的方法;我们可以一次枚举100000内的所有正整数m,标记“m加上m的各个数字之和得到的数有一个生成元是m”,最后查表即可。
import java.util.Scanner;

public class Main {
	static int[] ans=new int[100005];
	public static void main(String[] args) {
		Scanner sc=new Scanner(System.in);
		int T=sc.nextInt();
		for (int i = 1; i < ans.length; i++) {
			int x=i;
			int y=i;
			while(x>0) {
				y+=(x%10);
				x/=10;
			}
			if(y<ans.length) {
				if(ans[y]==0 || i<ans[y]) {
					ans[y]=i;
				}
			}
		}
		while(T>0) {
			T--;
			int n=sc.nextInt();
			System.out.println(ans[n]);
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值