比上一弹(【图像类算法常用数据集】整理第一弹_izzz_iz的博客-CSDN博客)列出的数据集更侧重训练(training)算法,数据集容量更加庞大。
目录
BSDS500
数据集介绍:
BSDS500数据集是由Berkeley Vision and Learning Center (BVLC)开发的一个常用于训练和评估图像恢复算法的数据集。它包含了500张图像, 其中包含各种各样的图像降质, 比如噪声, 模糊, 无损压缩等等。这些图像来自不同类型的图像, 包括城市, 建筑, 景观, 自然等等。这些图像都是从真实世界中收集而来, 具有很高的复杂度和真实性。BSDS500数据集广泛用于训练和评估降噪, 去模糊, 超分辨率等图像恢复算法, 并且在学术界和工业界都有广泛应用。
数据集来源
链接:
UC Berkeley Computer Vision Group - Contour Detection and Image Segmentation - Resources
制作机构:Berkeley Vision and Learning Center (BVLC)
原始文章:由Martin J. Fowlkes, David Martin, and Jitendra Malik于2001年在“International Journal of Computer Vision”发布的文章 “A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics”
REDS
数据集介绍:
REDS数据集是一个用于训练超分辨率算法的数据集,它由NTIRE 2019全球超分辨率挑战赛组织者开发。数据集共包含了400个视频序列,总共约120,000帧,其中包括不同类型的图像,如城市、建筑、景观、自然等等。这些图像都是来自真实世界,具有很高的复杂度和真实性。
REDS数据集中每个视频序列都包含了三种不同分辨率的图像,分别是原始高分辨率图像、低分辨率图像和中间分辨率图像。这样的数据组织方式可以用于训练超分辨率算法,并在不同的分辨率下评估其性能。
<