约瑟夫问题

约瑟夫问题是一个经典的理论问题,涉及编号1至n的人围坐成圈,按k(1≤k≤n)报数,数到m的人出列,然后下一个人继续从1开始报数。例如,当n=5,k=1,m=2时,出列顺序为2→4→1→5→3。通常使用单向循环链表来解决此问题,通过创建节点、链表以及实现出圈逻辑的代码来演示解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

Josephu(约瑟夫、约瑟夫环)  问题 Josephu  问题为:设编号为1,2,… n的n个人围坐一圈,约定编号为k(1<=k<=n)的人从1开始报数,数到m 的那个人出列,它的下一位又从1开始报数,数到m的那个人又出列,依次类

推,直到所有人出列为止,由此产生一个出队编号的序列。

举个例子

n = 5 , 即有5个人

k = 1, 从第一个人开始报数

m = 2, 数2下

经过一次出圈后

第二次出圈

第三次出圈

第四次出圈

所以最终的出圈顺序 2->4->1->5->3

以上方法是使用单向循环链表来完成的,下面看代码展示

创建一个孩子类,每个孩子对象表示一个节点

class Boy{
    //小孩编号
    private int no;
    //下一个小孩
    private Boy next;

    //构造器
    public Boy(int no){
        this.no = no;
    }

    public int getNo() {
        return no;
    }

    public Boy getNext() {
        return next;
    }

    public voi
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值