该版本只支持整数类型数进行计算
本文主要是对逆波兰计算器的原理介绍和代码实现,所以对前缀、中缀、后缀表达式不做过多的赘述,下面先简单介绍一下后缀表达式
后缀表达式又称逆波兰表达式,与前缀表达式相似,只是运算符位于操作数之后
举例: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 –
后缀表达式的计算机求值
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 和 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为
表达式的结果 例如: (3+4)×5-6 对应的后缀表达式就是 3 4 + 5 × 6 - , 针对后缀表达式求值步骤如下:
1 左至右扫描,将3和4压入堆栈;
2 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素),计算出3+4的值,得7,再将7入栈;
3 将5入栈;
4 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
5 将6入栈;
6 最后是-运算符,计算出35-6的值,即29,由此得出最终结果
不难看出,逆波兰计算器的重点不是计算,而是将用户输入的中缀表达式转换为后缀表达式
中缀表达式转换成后缀表达式的步骤
1 初始化两个栈:运算符栈s1和储存中间结果的栈s2;
2 从左至右扫描中缀表达式;
3 遇到操作数时,将其压s2;
4 遇到运算符时,比较其与s1栈顶运算符的优先级:
(1) 如果s1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
(2) 否则,若优先级比栈顶运算符的高,也将运算符压入s1;
(3) 否则,将s1栈顶的运算符弹出并压入到s2中,再次转到(4-1)与s1中新的栈顶运算符相比较;
5 遇到括号时:
(1) 如果是左括号“(”,则直接压入s1
(2) 如果是右括号“)”,则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止,此时将这一对括号丢弃
6 重复步骤2至5,直到表达式的最右边
7 将s1中剩余的运算符依次弹出并压入s28 依次弹出s2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式
下面看一个实例
由用户输入 1+((2+3)*4)-5表达式,计算对应的结果
将1+((2+3)*4)-5表达式转换为后缀表达式
初始化两个栈,运算符栈s1和储存中间结果的栈s2,设置一个指针,从中缀表达式的左边开始向右边扫描
扫描到1,1是操作数,所以直接压入s2栈中
继续扫描,扫描到“+”,是运算符,但是因为s1栈为空,所以直接压入s1栈
继续扫描,扫描到两个“(”,直接压入s1栈
继续扫描,扫描到2,操作数,直接压入s2栈
继续扫描,扫描到“+”,因为s1栈顶元素不是运算符,所以继续压栈
继续扫描,扫描到操作数,直接压入s2栈