LeetCode 解题思路 28(全排列、子集)

在这里插入图片描述

解题思路:

  1. 递归参数: 给定数组 nums、结果集 result、当前路径 path、标记数组 used。
  2. 递归过程:
  • 当路径 path 的大小等于 nums 长度时,说明找到一个全排列,加入结果集。
  • 遍历 nums,对于每个未被选中的元素,标记为已使用,加入路径,递归处理后续选择。
  • 递归返回后,撤销选择(回溯),继续尝试其他可能性。

Java代码:

class Solution {
    public List<List<Integer>> permute(int[] nums) {
        List<List<Integer>> result = new ArrayList<>();
        List<Integer> path = new ArrayList<>();
        boolean[] used = new boolean[nums.length];

        backtrack(nums, result, path, used);
        return result;
    }

    private void backtrack(int[] nums, List<List<Integer>> result, List<Integer> path, boolean[] used) {
        if (path.size() == nums.length) {
            result.add(new ArrayList<>(path));
            return;
        }

        for (int i = 0; i < nums.length; i++) {
            if (used[i]) continue;

            used[i] = true;
            path.add(nums[i]);
            backtrack(nums, result, path, used);
            path.removeLast();
            used[i] = false;
        }
    }
}

复杂度分析:

  • 时间复杂度: O(nn!)。生成所有排列需要 n! 次操作,每次生成需 O(n) 时间复制数组或列表。
  • 空间复杂度: O(n)(递归栈)+ O(nn!)(结果存储)。递归深度为 n,结果集存储所有排列。

在这里插入图片描述

解题思路:

  1. 递归参数: 给定数组 nums、结果集 result、当前路径 path、当前起始索引 start。
  2. 递归过程:
  • 每次进入递归时,将当前的路径加入结果集(因为路径的任何状态都是一个有效子集)。
  • 遍历 nums,从 start 开始遍历数组,依次将元素加入路径,递归处理后续选择。
  • 递归返回后,撤销选择(回溯),继续尝试其他可能性。

Java代码:

class Solution {
    public List<List<Integer>> subsets(int[] nums) {
        List<List<Integer>> result = new ArrayList<>();
        List<Integer> path = new ArrayList<>();
        backtrack(nums, result, path, 0);
        return result;
    }

    private void backtrack(int[] nums, List<List<Integer>> result, List<Integer> path, int start) {
        result.add(new ArrayList<>(path));
        for (int i = start; i < nums.length; i++) {
            path.add(nums[i]);
            backtrack(nums, result, path, i + 1);
            path.remove(path.size() - 1);
        }
    }
}

复杂度分析:

  • 时间复杂度: O(n 2 n 2^n 2n)。每个元素都有选或不选两种选择,共生成 ​ 2 n 2^n 2n 个子集。每次生成子集需 ​O(n) 时间复制路径到结果集。
  • 空间复杂度: O( 2 n 2^n 2n)(结果存储)+ O(n)(递归栈)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值