LeetCode 解题思路 34(Hot 100)

在这里插入图片描述

解题思路:

  1. 旋转数组特性: 旋转后的数组由两个递增子数组组成,且前一部分的所有元素均大于后一部分。
  2. 二分查找策略:
  • 若中间元素大于右边界元素,说明最小值位于中间元素的右侧。
  • 若中间元素小于右边界元素,说明最小值位于中间元素或其左侧。
  1. ​​终止条件: 当左右指针重合时,即为最小元素的位置。

Java代码:

class Solution {
    public int findMin(int[] nums) {
        int left = 0, right = nums.length - 1;

        while (left < right) {
            int mid = left + (right - left) / 2;
            if (nums[mid] > nums[right]) {
                left = mid + 1;
            } else {
                right = mid;
            }
        }

        return nums[left];
    }
}

复杂度分析:

  • 时间复杂度: O(log n)。每次迭代将搜索范围缩小一半,故时间为对数级别。
  • 空间复杂度: O(1)。只使用了常数级别的额外空间。

在这里插入图片描述

解题思路:

  1. 中位转换: 中位数等价于找第 k 小的元素。总长度为奇数时取中间元素,偶数时取中间两元素均值。
  2. 快速排除: 在 nums1 中寻找分割点 i,使得 nums1 和 nums2 的左半部分元素总数等于右半部分。
  • 每次比较两数组中第 k/2 位置的元素(pivot1 和 pivot2)。
  • 若pivot1 ≤ pivot2,说明数组 1 的前 k/2 个元素不可能是第 k 小,直接舍弃这部分。
  • 否则舍弃数组 2 的前 k/2 个元素。
  • 每轮排除后,更新剩余 k 值。
  1. 终止条件:
  • 当某一数组遍历完时,直接从另一数组取剩余元素。
  • k = 1 时,当前两指针位置的较小值即为结果。

Java代码:

class Solution {
    public double findMedianSortedArrays(int[] nums1, int[] nums2) {
        int length1 = nums1.length, length2 = nums2.length;
        int totalLength = length1 + length2;
        if (totalLength % 2 == 1) {
            int midIndex = totalLength / 2;
            double median = getKthElement(nums1, nums2, midIndex + 1);
            return median;
        } else {
            int midIndex1 = totalLength / 2 - 1, midIndex2 = totalLength / 2;
            double median = (getKthElement(nums1, nums2, midIndex1 + 1) + getKthElement(nums1, nums2, midIndex2 + 1)) / 2.0;
            return median;
        }
    }

    public int getKthElement(int[] nums1, int[] nums2, int k) {
        int length1 = nums1.length, length2 = nums2.length;
        int index1 = 0, index2 = 0;
        int kthElement = 0;

        while (true) {
            if (index1 == length1) return nums2[index2 + k - 1];
            if (index2 == length2) return nums1[index1 + k - 1];
            if (k == 1) return Math.min(nums1[index1], nums2[index2]);
            
            int half = k / 2;
            int newIndex1 = Math.min(index1 + half, length1) - 1;
            int newIndex2 = Math.min(index2 + half, length2) - 1;
            int pivot1 = nums1[newIndex1], pivot2 = nums2[newIndex2];
            if (pivot1 <= pivot2) {
                k -= (newIndex1 - index1 + 1);
                index1 = newIndex1 + 1;
            } else {
                k -= (newIndex2 - index2 + 1);
                index2 = newIndex2 + 1;
            }
        }
    }
}

复杂度分析:

  • 时间复杂度: O(log(m+n))。
  • 空间复杂度: O(1)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值