二分查找
704二分查找
方法一
第一种写法,我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要非常重要)。
区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:
- while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
- if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
class Solution {
public int search(int[] nums, int target) {
int left = 0;
int right = nums.length-1;
int middle = 0 ;
while(left <= right){ // middle的定义于[left,right] => [0,nums.length-1]
// middle = (right - left + 2 * left)/2
middle = (right - left)/2 + left;
if(nums[middle] == target){
return middle;
}else if(nums[middle] > target){
right = middle -1; // 范围在[left,middle-1]
}else if(nums[middle] < target){
left = middle + 1; // 范围在[middle + 1,right]
}
}
return -1;
}
}
方法二
如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。
有如下两点:
- while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
- if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
class Solution {
public int search(int[] nums, int target) {
int left = 0;
int right = nums.length;
int middle = 0 ;
while(left < right){ // middle的定义于[left,right) => [0,nums.length)
// middle = (right - left + 2 * left)/2
middle = (right - left)/2 + left;
if(nums[middle] == target){
return middle;
}else if(nums[middle] > target){
right = middle ; // 范围在[left,middle)
}else if(nums[middle] < target){
left = middle + 1 ; // 范围在[middle,right)
}
}
return -1;
}
}
35.搜索插入位置
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
示例 1:
输入: nums = [1,3,5,6], target = 5
输出: 2
示例 2:
输入: nums = [1,3,5,6], target = 2
输出: 1
示例 3:
输入: nums = [1,3,5,6], target = 7
输出: 4
题解
思考,当退出while时,left与right值的意义
结论:left表示比target小的在数组中元素的个数,比如当left = 4 ,表示数组中有前4个元素小于target
例如:[1,2,3,5] target=4, left在退出循环后为3,表示前3个元素[1,2,3]小于target
这个结论适用于 left与right 在 [0,nums.length-1] 和 [0,nums.length)时的情景,所以方法一与方法二都可以这样使用。
退出以后left的取值范围在[0,nums.length]
参考:https://blog.csdn.net/xushiyu1996818/article/details/102482609
方法一
class Solution {
public int searchInsert(int[] nums, int target) {
int left = 0;
int right = nums.length-1;
int middle = 0 ;
while(left <= right){ // middle的定义于[left,right] => [0,nums.length-1]
// middle = (right - left + 2 * left)/2
middle = (right - left)/2 + left;
if(nums[middle] == target){
return middle;
}else if(nums[middle] > target){
right = middle -1; // 范围在[left,middle-1]
}else if(nums[middle] < target){
left = middle + 1; // 范围在[middle + 1,right]
}
}
// 表示target前有left的元素,那么插入后,target在数组中的坐标就是left
return left;
}
}
方法二
class Solution {
public int searchInsert(int[] nums, int target) {
int left = 0;
int right = nums.length;
int middle = 0 ;
while(left < right){ // middle的定义于[left,right) => [0,nums.length)
// middle = (right - left + 2 * left)/2
middle = (right - left)/2 + left;
if(nums[middle] == target){
return middle;
}else if(nums[middle] > target){
right = middle ; // 范围在[left,middle)
}else if(nums[middle] < target){
left = middle + 1 ; // 范围在[middle,right)
}
}
// 表示target前有left的元素,那么插入后,target在数组中的坐标就是left
return left;
}
}
34.在排序数组中查找元素的第一个和最后一个位置
给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
示例 1:
输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]
示例 2:
输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]
示例 3:
输入:nums = [], target = 0
输出:[-1,-1]
class Solution {
public int[] searchRange(int[] nums, int target) {
if (nums.length == 0) {
return new int[]{-1, -1};
}
// 默认情况下都为-1
int[] res = {-1, -1};
int left = 0;
int right = nums.length - 1;
// 寻找左边界
while (left <= right) {
int mid = (right - left) / 2 + left;
if (nums[mid] == target) { // 可能会遇到在[left,mid-1)中 不存在target的情况,
// 不过没关系 因为这种情况是原来情况(搜索插入位置中的情况),
// 如果写成right = mid , 会造成left = right
// 且 nums[mid] = target 的情况,,而造成死循环
right = mid - 1;
} else if (nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] < target) {
left = mid + 1;
}
}
// 退出时left 可能等于nums.length, 此时不存在左边界,因为target不在nums中
// 本题目的要求是target要存在nums中,所以要判断 nums[left] == target
// 如果为true,则表示存在,left 就是他的左边界
// 如果是false,表示不出在
if (left < nums.length && nums[left] == target) {
res[0] = left;
}
left = 0;
right = nums.length - 1;
// 寻找右边界
while (left <= right) {
int mid = (right - left) / 2 + left;
if (nums[mid] == target) {
// 这里同样不能写 left = mid,会找成死循环, 此时的区间为[mid+1,right]
// 如果target的右边界为mid, 那么它将在[mid+1,right]之外
// 不过没关系,[mid+1,right] 会在后续中,向mid收缩,
// 因为在mid在[mid+1,right]的右边
// 会收缩到[mid+1,mid+1], 再收缩 => [mid+1,mid] 退出循环
// 所以如果target在nums中,则左边界-1(或者是右边界的值) 就是它的最右区间
left = mid + 1;
} else if (nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] < target) {
left = mid + 1;
}
}
// 这里同样判断
if (left - 1 >= 0 && nums[left - 1] == target) {
res[1] = left - 1;
}
return res;
}
}
69.x的平方根(练习)
给你一个非负整数 x ,计算并返回 x 的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。
示例 1:
输入:x = 4
输出:2
示例 2:
输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。
现在要插入一个数x,假设它满足m的平方<x<(m+1)的平方 ,不用考虑相等,因为那会直接返回
退出循环后,left的值为m+1
表示前面有m+1个数小于它
这里题目要求向下取整,所以返回left-1 也就是m
如果是向上取整,则返回left,也就是m+1
class Solution {
public int mySqrt(int x) {
int left= 0;
int right =x;
while(left <=right ){ // mid的取值为[left,right]
int mid = (right - left)/2 +left;
long val =(long) mid * mid;
if(val == x){
return mid;
}else if (val > x){
right = mid -1;
}else if(val < x){
left = mid +1;
}
}
return left-1;
}
}
367.有效的完全平方数(练习)
给定一个 正整数 num ,编写一个函数,如果 num 是一个完全平方数,则返回 true ,否则返回 false 。
进阶:不要 使用任何内置的库函数,如 sqrt 。
示例 1:
输入:num = 16
输出:true
示例 2:
输入:num = 14
输出:false
class Solution {
public boolean isPerfectSquare(int num) {
int left = 0;
int right = num/2+1;
while(left <= right){
int mid = (right - left)/2 + left;
long val =(long) mid * mid;
if(val == num){
return true;
}else if(val > num){
right = mid - 1;
}else if(val < num){
left = mid + 1;
}
}
return false;
}
}