一、质数
质数不能被除1和本身之外的任何数整除,否则称为合数。2是最小的质数,1既不是质数又不是合数
1、质数判断
bool isPrime(int n){
for (int i = 2; i <= n/i; i++){
//i*i可能会导致int型溢出
if (n%i == 0) return false;
}
return true;
}
2、使用埃式筛法选取质数,来选取1-n之间的质数
vector<int> res; //用来存储1-n的质数
const int N = 1e6+10;
bool notPrime[N] = {false};
for (int i = 2; i <= n; i++){
if (notPrime[i] == false){//i是素数,那么2i、3i、...、ki都不是素数
for (int j = 2*i; j <= n; j += i){
notPrime[j] = true;
}
}
}
for(int i = 2; i <= n; i++){
if (!notPrime[i]) res.push_back(i);
}
时间复杂度O(nloglogn)
Leetcode204计数质数
class Solution {
public:
int countPrimes(int n) {
int cnt = 0;
vector<int> notPrime(n, 0);
for (int i = 2; i < n; i++){
if (!notPrime[i]){
cnt++;
for (int j = 2*i; j < n; j += i){
notPrime[j] = 1;
}
}
}
return cnt;
}
};
二、质因子分解
质因子分解,将一个int型的整数分解成若干质因子的乘积
对于int型的整数而言,2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29就已经查过int型的范围了,只需要记录这10个质因子即可
typedef pair<int, int> PII;
vector res; //res[i].first表示对应的质因子,res[i].second表示对应质因子出现的次数
int Prime[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23};
//int Prime[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23};等价于
void init(){
int idx = 0;
for (int i = 2; i < 30; i++){
bool flag = true;
for (int j = 2; j *j <= i && flag; j++){
if (i%j == 0) flag = false;
}
if (flag) Prime[idx++] = i;
if (idx == 10) break;
}
}
对于一个正整数n而言,如果太存在1和本身之外的质因子,那么他一定是在sqrt(n)的左右成对出现的
对于一个正整数n来说,如果他存在[2,n]范围内的质因子,那么这些质因子全部小于等于sqrt(n),要么只存在一个>sqrt(n)的质因子,而其余的质因子<=sqrt(n)
1、枚举1-sqrt(n)范围内的质因子p,判断p是否是n的因子
if (n%Prime[i] == 0){
int cnt = 0;
while(n%Prime[i] == 0){
cnt++;
n /= Prime[i];
}
res.push_back({Prime[i], cnt});
}
2、如果上面步骤结束之后,n != 1,说明有一个>sqrt(n)的一个质因子,这使把这个质因子加入到fac数组中
if (n != 1){
res.push_back({n, 1});
}
时间复杂度O(sqrt(n))
#include <iostream>
using namespace std;
int n, a;
int main(){
cin>>n;
while(n--){
cin>>a;
if (a == 1) cout<<"1 1"<<endl;
else{
for (int i = 2; i <= a/i; i++){
if (a%i == 0){
int s = 0;
while(a%i == 0) a /= i, s++;
cout<<i<<" "<<s<<endl;
}
if (a == 1) break;
}
if (a != 1) cout<<a<<" "<<1<<endl;
}
cout<<endl;
}
return 0;
}