质数和质因子分解

本文介绍了质数的基本概念,包括质数的判断方法(埃氏筛法)、计数质数的LeetCode解法,以及质因数分解的高效算法。重点讲解了如何利用埃氏筛法选取1-n范围内的质数,并针对大整数的质因子分解提供了优化策略。
摘要由CSDN通过智能技术生成

一、质数
质数不能被除1和本身之外的任何数整除,否则称为合数。2是最小的质数,1既不是质数又不是合数
1、质数判断

bool isPrime(int n){
        for (int i = 2; i <= n/i; i++){
        //i*i可能会导致int型溢出
            if (n%i == 0)   return false;
        }
        return true;
    }

2、使用埃式筛法选取质数,来选取1-n之间的质数

vector<int> res;	//用来存储1-n的质数
const int N = 1e6+10;
bool notPrime[N] = {false};

for (int i = 2; i <= n; i++){
     if (notPrime[i] == false){//i是素数,那么2i、3i、...、ki都不是素数
         for (int j = 2*i; j <= n; j += i){
             notPrime[j] = true;
         }
     }
 }
 for(int i = 2; i <= n; i++){
     if (!notPrime[i])   res.push_back(i);
 }

时间复杂度O(nloglogn)
Leetcode204计数质数

class Solution {
public:
    int countPrimes(int n) {
        int cnt = 0;
        vector<int> notPrime(n, 0);
        for (int i = 2; i < n; i++){
            if (!notPrime[i]){
                cnt++;
                for (int j = 2*i; j < n; j += i){
                    notPrime[j] = 1;
                }
            }
        }
        return cnt;
    }
};

二、质因子分解
质因子分解,将一个int型的整数分解成若干质因子的乘积
对于int型的整数而言,2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 * 29就已经查过int型的范围了,只需要记录这10个质因子即可

typedef pair<int, int> PII;
vector res; //res[i].first表示对应的质因子,res[i].second表示对应质因子出现的次数
int Prime[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23};

//int Prime[10] = {2, 3, 5, 7, 11, 13, 17, 19, 23};等价于
void init(){
    int idx = 0;
    for (int i = 2; i < 30; i++){
        bool flag = true;
        for (int j = 2; j *j <= i && flag; j++){
            if (i%j == 0)  flag = false; 
        }
        if (flag)   Prime[idx++] = i;
        if (idx == 10)  break;
    }
}

对于一个正整数n而言,如果太存在1和本身之外的质因子,那么他一定是在sqrt(n)的左右成对出现的
对于一个正整数n来说,如果他存在[2,n]范围内的质因子,那么这些质因子全部小于等于sqrt(n),要么只存在一个>sqrt(n)的质因子,而其余的质因子<=sqrt(n)

1、枚举1-sqrt(n)范围内的质因子p,判断p是否是n的因子

if (n%Prime[i] == 0){
    int cnt = 0;
    while(n%Prime[i] == 0){
        cnt++;
        n /= Prime[i];
    }
    res.push_back({Prime[i], cnt});
}

2、如果上面步骤结束之后,n != 1,说明有一个>sqrt(n)的一个质因子,这使把这个质因子加入到fac数组中

if (n != 1){
    res.push_back({n, 1});
}

时间复杂度O(sqrt(n))

867分解质因数

#include <iostream>
using namespace std;

int n, a;

int main(){
    cin>>n;
    while(n--){
        cin>>a;
        if (a == 1) cout<<"1 1"<<endl;
        else{
            for (int i = 2; i <= a/i; i++){
                if (a%i == 0){
                    int s = 0;
                    while(a%i == 0) a /= i, s++;
                    cout<<i<<" "<<s<<endl;
                }
                if (a == 1) break;
            }
            if (a != 1) cout<<a<<" "<<1<<endl;
        }
        cout<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值