Hossam and Trainees

文章讲述了在CodeforcesRound837的一道题目中,如何通过质因数分解技巧解决两个数配对问题。通过Euler筛法找到小于10^9的质数,然后检查每个数是否具有重复的质因数,以确定配对成功与否。算法的时间复杂度大约为O(n*sqrt(1e9)/ln(sqrt(1e9))+n*log^2)
摘要由CSDN通过智能技术生成

题目链接

Codeforces Round 837 (Div. 2)

C. Hossam and Trainees


思路:

题目翻译一下,其实就是如果两个数的最大公因数不等于 1 1 1,这两个数就可以配对成功。

所以一种想法就是把每个数质因数分解,只要其中有一对数有重复的质因数,就可以配对成功,否则一对都没有就配对失败。找重复的质因数可以用set,把每个数包含的质因数尝试放入set,如果已经存在,则说明和前面某个数有重复质因数。

质因数分解朴素想法是用筛筛出来,但是空间存不下,而且也会超时。考虑到一个 ≤ 1 0 9 \le 10^9 109 的数大部分质因数都是 ≤ 1 0 9 \le\sqrt {10^9} 109 的,最多只有一个质因数 > 1 0 9 \gt \sqrt {10^9} >109 ,所以我们可以把 ≤ 1 0 9 \le\sqrt {10^9} 109 的所有质数筛出来,然后枚举质数去验证是不是这个数的因数,这样就可以用 1 0 9 l n 1 0 9 ≈ 3 ∗ 1 0 3 \dfrac{\sqrt{10^9}}{ln{\sqrt{10^9}}}\approx3*10^3 ln109 109 3103 的空间和时间来分解出一个数的质因数(3042个质数)。

时间复杂度是分解的复杂度加上维护set的复杂度,大概是 O ( n ∗ 1 0 9 l n 1 0 9 + n ∗ l o g 2 ) O(n*\dfrac{\sqrt{10^9}}{ln{\sqrt{10^9}}}+n*log^2) O(nln109 109 +nlog2),运算次数大概是 1 0 8 10^8 108 量级,时限有两秒,可以通过。

code:

#include <iostream>
#include <cstdio>
#include <cmath>
#include <set>
using namespace std;
const int maxn=1e5+5;
const int inf=1e9;
const int sq=sqrt(1e9)+5;

int T,n,a[maxn];

bool vis[maxn];
int prime[maxn],cnt;
void Eular(int n){
	vis[1]=true;
	for(int i=2;i<=n;i++){
		if(!vis[i])
			prime[++cnt]=i;
		for(int j=1,p=prime[1];j<=cnt && i*p<=n;p=prime[++j]){
			vis[i*p]=true;
			if(i%p==0)break;
		}
	}
}

bool check(){
	set<int> S;
	for(int i=1;i<=n;i++){
		for(int j=1,p=prime[1];j<=cnt && p<=a[i];p=prime[++j]){
			if(a[i]%p!=0)continue;
			while(a[i]%p==0)a[i]/=p;
			if(S.find(p)==S.end())S.insert(p);
			else return true;
		}
		if(a[i]>1){
			if(S.find(a[i])==S.end())S.insert(a[i]);
			else return true;
		}
	}
	return false;
}

int main(){
	cin.tie(0)->sync_with_stdio(false);
	Eular(sq);
	cin>>T;
	while(T--){
		cin>>n;
		for(int i=1;i<=n;i++)cin>>a[i];
		
		puts((check())?"YES":"NO");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值