原码,反码,补码

本文详细介绍了补码的概念,用于解决有符号数在计算机中的表示问题。从原码、反码到补码的演变过程,阐述了补码如何确保正负数相加得0的特性,并解释了如何通过补码进行减法运算,以及如何快速计算负数的补码。补码的使用简化了计算机内部的算术运算,使得加法器可以实现加法和减法操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

补码

以8位数据为例, 对应的所有二进制可能是00000000b~11111111b。

对于无符号整数而言:上面的二制数是与0~255一一对应的。

00000000b: 0
00000001b: 1
00000010b: 2
……
11111111b:255

如果想表示负数(有符号数),怎么办?


原码,反码,补码,都是表示方法。后两者由前者发展而来。

原码表示法:最高位符号位(正为0,负为1),其余用作数值
反码表示法:正数约定与原码表示法相同表示,对应负数则将每位取反
补码表示法:正数约定与原码表示法相同表示,对应负数则为负数反码表示方式+1

人们首先想出了一种办法:用最高位来表示正负,其它位来表示数值。

这个就是原码的表示:
在这里插入图片描述

00000000b:0
00000001b:1
……
01111111b:127
10000000b:0
10000001b:-1
……
11111111b:-127

可以看出有两个表示0的二进制。


于是有了第二种想法:

用00000000b~01111111b表示0~127,然后再用它们二进制码全部取反来得到其对应的负数。

这个就是反码的表示:
在这里插入图片描述

00000000b:0				11111111b:-0
00000001b:1				11111110b:-1
……							……
01111111b:127				10000000b:-127

可是同样的问题还是再次出现了。0又出现了两次。


让0只有00000000b一种二进制码,发现可以将原来的反码加一。因为8位寄存器最多只留8位。所以加1后就正好是00000000b

00000000b:0				11111111b + 1 = 00000000b:-0 
00000001b:1				11111110b + 1 = 11111111b:-1
……							……
01111111b:127				10000000b + 1 = 10000001b:-127
010000000b:128             01111111b + 1 = 10000000b:-128

这样就正好形成一个闭环(用了四位二进制来表示)。而且最最最重要的是,可以实现符号相反的数相加的和的补码为0(除去溢出的那位)。

1+(-1) = 1 0000 因为是四位,所以这个最高位的1不算在内。正好是0的补码!
也可以说明,补码的运算与字长非常相关,这里字长为4位。

如果字长为8位:
1 + (-1) = 00000001 + 11111111 = 1 00000000

在这里插入图片描述
对于此圆,顺时针表示加1,逆时针表示减1,在圆内异号的数运算结果不会出此圆。
有了这个结论,以后的减法就可以用加法来实现了。
比如:

3 - 2 = 0011 - 0010 CPU才不会这么算,他只会加法,3逆时针移动2/-2顺时针移动3位。
3 + (-2) = 0011 + 1110 = 1 0001 最高位也不要了,正好是1

一个正数最高位为0时,取其反码+1, 为其负数,所以:
就一个补码而言,最高位为1的就是负数,为0的就是正数,0的补码就全是0。


正数的补码就是本身的原码
负数的补码就是其对应正数原码(也是正数补码)的反码加1

例如:

20的补码:00010100b
20的反码:11101011b
-20的补码:11101100b

可以不通过正数的反码来求其负数的补码:

将正数补码从右向左复制,当复制完一个1后,后面的全部取反。

例如:

5的补码:0101
-5的补码:1011

因为一个正数,必有一位会是1,此位取反后会是0,此位加1还是1,不会进1给高位了,高位就一直是它的反码了。反之,如果一位是0,那取反后是1,加1会向高位进1,高位就是反码+1,变成本身了。所以从低位起遇0复制,再复制一个1,后面取反即可。

<think>嗯,用户想学习或练习原码反码补码的概念及转换,需要提供练习题和解释转换方法。首先,我得回顾一下原码反码补码的基本知识,确保自己理解正确。原码是最直观的表示法,符号位加上绝对值的二进制形式。反码原码的符号位不变,其他位取反。补码则是反码加1,用于解决减法运算的问题。 用户可能对转换步骤不太清楚,需要分步骤说明。例如,正数的原码反码补码都相同,而负数则不同。练习题部分,应该设计不同数值的例子,覆盖正数、负数以及零的情况。单选题也是一个好的练习形式,比如引用中的题目,关于±0编码相同的选项,正确答案是补码和移码,用户提供的引用[2]中提到选项C正确,需要确认这一点。 转换方法需要详细步骤,可能用户会混淆补码的转换过程,尤其是负数的情况。比如,-5的原码是10000101,反码是11111010,补码是11111011。确保每个步骤都清晰,特别是补码为什么要加1,以及补码如何简化运算。 还要注意用户提到的引用内容,引用[1]说明补码解决了减法问题,引用[2]的练习题涉及到不同编码中±0的表现。需要正确引用这些资料,并在解释中自然地加入引用标识。例如,在解释补码的作用时,引用[^1],而在讨论练习题时引用[^2]。 另外,用户可能需要实际应用的例子,比如计算机中如何使用补码进行运算,避免符号位的处理问题。练习题应该由易到难,先单个数的转换,再涉及运算,比如两个补码相加后的结果判断。 最后,要确保回答结构清晰,分点解释概念、转换步骤、练习题及答案,以及相关问题的扩展,帮助用户全面理解和练习。同时,检查LaTeX格式是否正确,所有数学表达式用$...$或$$...$$,避免格式错误。</think>### 原码反码补码的概念及转换方法 原码反码补码计算机中表示有符号整数的三种方式,核心目标是简化运算(尤其是减法)。以下是详细解释和练习题: --- #### **1. 基本概念** 1. **原码** - **定义**:符号位(最高位)表示正负,0为正,1为负;其余位为数值的绝对值。 - **示例**:$+5$ 的原码为 $00000101$,$-5$ 的原码为 $10000101$。 2. **反码** - **正数**:与原码相同。 - **负数**:符号位不变,数值位按位取反。 - **示例**:$-5$ 的反码为 $11111010$。 3. **补码** - **正数**:与原码相同。 - **负数**:反码加 $1$。 - **示例**:$-5$ 的补码为 $11111011$。 --- #### **2. 转换方法** 1. **原码反码补码** - **正数**:原码 = 反码 = 补码。 - **负数**: - 原码符号位不变,数值位取反 → 反码。 - 反码加 $1$ → 补码。 - **示例**:$-3$ - 原码:$10000011$ - 反码:$11111100$ - 补码:$11111101$ 2. **补码原码** - **方法**:补码取反后加 $1$(与原码补码过程一致)。 - **示例**:补码 $11111101$ → 取反 $10000010$ → 加 $1$ → 原码 $10000011$(即 $-3$)。 --- #### **3. 练习题与解析** **题目1** 将 $-7$ 转换为8位原码反码补码。 - **原码**:$10000111$ - **反码**:$11111000$ - **补码**:$11111001$ **题目2**(引用题) 单选题:±0编码相同的是( )。 A. 原码补码 B. 反码补码 C. 补码和移码 D. 原码和移码 - **答案**:C - **解析**:补码和移码中,$+0$ 和 $-0$ 的表示均为全0(补码)或特定偏移值(移码)[^2]。 **题目3** 补码 $10101010$ 对应的原码是多少? - **步骤**:补码取反 → $01010101$,加 $1$ → $01010110$,符号位为负 → $-86$。 --- #### **4. 核心作用** 补码解决了原码反码中“减法需特殊处理符号位”的问题,使加减法统一为加法运算[^1]。例如: $$5 - 3 = 5 + (-3)_{\text{补码}}$$ 计算机中直接对补码相加即可得到正确结果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Colin Snell

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值