1-赢家通吃:为组合优化训练性能RL种群(完)


Abstract

将强化学习(RL)应用于组合优化问题具有吸引力,因为它免除了对专家知识或预解实例的需求。然而,由于组合优化问题固有的复杂性(通常是NP难问题),期望一个智能体在推理时一次性解决这些问题却是不现实的。因此,领先的方法常常实施额外的搜索策略,从随机采样、束搜索到显式的微调。在本文中,我们主张学习一组互补的策略,并在推理时同时进行 rollout(策略展开)。为此,我们引入了Poppy,一种简单的群体训练方法。与依赖预定义或手工设计的多样性概念不同,Poppy诱导出一种非监督的专业化,唯一的目标是最大化群体的性能。我们展示了Poppy能够生成一组互补的策略,并在四个流行的NP难问题——旅行商问题、容量车辆路径问题、0-1背包问题和作业车间调度问题上,取得了最先进的RL成果。

1 Introduction

近年来,机器学习(ML)方法在多种具有挑战性的任务中超越了使用手工设计特征和策略的算法 [Mnih 等,2015,van den Oord

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

太极生两鱼

要天天开心哦!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值