arange和reshape的用法在上篇演示过
import numpy as np
A=np.arange(3,15).reshape((3,4))
print(A)
output:
[[ 3 4 5 6] [ 7 8 9 10] [11 12 13 14]]
输出一行
print(A[0])
outpu:
[3 4 5 6]
输出一项(正常二维数组的方法):
print(A[1][1])
print(A[1,1])
output:
8 8
冒号可以代表一行/列,注意 ”,“ 不能省;
print(A[2,:])
output:
[11 12 13 14]
类似于python切片,[a,b]都是前面开区间,后面闭区间;
print(A[1,1:3])
output:
[8 9]
迭代A中的行
i=0
for row in A:
print('第'+str(i)+'行')
i=i+1
print(row)
output:
第0行 [3 4 5 6] 第1行 [ 7 8 9 10] 第2行 [11 12 13 14]
迭代列:
i=0
for column in A.T:
print('第'+str(i)+'列')
i=i+1
print(column)
output:
第0列 [ 3 7 11] 第1列 [ 4 8 12] 第2列 [ 5 9 13] 第3列 [ 6 10 14]
A矩阵逐项输出,须将它先扁平化A.flatten();
print(A)
print(A.flatten())
for item in A.flat:
print(item)
output:
[[ 3 4 5 6] [ 7 8 9 10] [11 12 13 14]] [ 3 4 5 6 7 8 9 10 11 12 13 14] 3 4 5 6 7 8 9 10 11 12 13 14
参考:
https://www.bilibili.com/video/BV1Ex411L7oT?p=7