Description
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
图1
图2
现给定两棵树,请你判断它们是否是同构的。
Input
输入数据包含多组,每组数据给出2棵二叉树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出”-”。给出的数据间用一个空格分隔。
注意:题目保证每个结点中存储的字母是不同的。
Output
如果两棵树是同构的,输出“Yes”,否则输出“No”。
Sample
Input
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
Output
Yes
Hint
测试数据对应图1
(借鉴大佬的)思路:
使用静态链表组织数据。
第一步建表:
首先将输入的数据转化为可用的int类型,并找出根(找根的方法是,根是树种唯一没有双亲的结点);
第二步判断同构,首先分为三种边界情况:
1.两子树同时为空,此时同构
2.一子树为空,一子树不为空,此时不同构
3.两子树根节点不同,此时不同够
然后进行递归情况的讨论,由于题目要求,可分为三种情况(依据左子树):
1.两棵树的左子树都不存在
2.B结点的左子树与C结点的左子树进行比较,B结点的右子树与C结点的右子树进行比较
3.B结点的左子树与C结点的右子树进行比较,B结点的右子树与C结点的左子树进行比较
答案:
#include <bits/stdc++.h>
#define ll long long
const int N = 1e5 + 10;
using namespace std;
struct tree
{
char data;
int l;
int r;
} Tree1[11],Tree2[11];
int Buildtree(tree *Tree,int n)
{
int root=-1;
int i;
char l;
char r;
char x[11],y[11],z[11];
int vis[11];
if(n>0)
{
memset(vis,0,sizeof(vis));
for(i=0; i<n; i++)
{
cin>>x>>y>>z;
Tree[i].data=x[0];
l=y[0];
r=z[0];
if(l!='-')
{
Tree[i].l=l-'0';
vis[Tree[i].l]=1; ///标记不是根的结点
}
else
{
Tree[i].l=-1;
}
if(r!='-')
{
Tree[i].r=r-'0';
vis[Tree[i].r]=1; ///标记不是根的结点
}
else
{
Tree[i].r=-1;
}
}
for(i=0; i<n; i++) ///找根结点
{
if(!vis[i])
{
break;
}
}
root=i;
}
return root;
}
int ISO(int root1,int root2)
{
if(root1==-1&&root2==-1) ///两棵树都是空树
{
return 1;
}
if((root1 == -1&&root2 != -1)||(root1 != -1&&root2 == -1)) /// 一棵树为空,一棵树不为空
{
return 0;
}
if(Tree1[root1].data != Tree2[root2].data) ///树根不同
{
return 0;
}
if(Tree1[root1].l == -1&&Tree2[root2].l == -1) /// 两数左子树为空,递归右子树
{
return ISO(Tree1[root1].r, Tree2[root2].r);
}
if((Tree1[root1].l!=-1&&Tree2[root2].l!=-1)&&Tree1[Tree1[root1].l].data == Tree2[Tree2[root2].l].data) /// 两树左子树不为空,且两树左子树根相等,则分别递归左右子树
{
return (ISO(Tree1[root1].l, Tree2[root2].l)&&ISO(Tree1[root1].r, Tree2[root2].r));
}
else
{
return (ISO(Tree1[root1].l, Tree2[root2].r)&&ISO(Tree1[root1].r, Tree2[root2].l));
}
}
int main()
{
int root1;
int root2;
int n,m;
while(cin>>n)
{
root1=Buildtree(Tree1,n);
cin>>m;
root2=Buildtree(Tree2,m);
if(ISO(root1,root2))
cout<<"Yes"<<endl;
else
cout<<"No"<<endl;
}
return 0;
}