n-皇后问题是指将 n 个皇后放在 n∗n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。
现在给定整数n,请你输出所有的满足条件的棋子摆法。
输入格式
共一行,包含整数n。
输出格式
每个解决方案占n行,每行输出一个长度为n的字符串,用来表示完整的棋盘状态。
其中”.”表示某一个位置的方格状态为空,”Q”表示某一个位置的方格上摆着皇后。
每个方案输出完成后,输出一个空行。
输出方案的顺序任意,只要不重复且没有遗漏即可。
数据范围
1≤n≤9
输入样例:
4
输出样例:
.Q..
...Q
Q...
..Q.
..Q.
Q...
...Q
.Q..
思路:
深度优先遍历dfs。
每一行必定有一个皇后,对行进行深度遍历
对于第 r 行的第 i 个位置, ,判断每个点是否可以放皇后,如果可以,则放皇后,然后处理 r + 1 行。
直到 r = n,程序指行完毕。
答案:
#include <bits/stdc++.h>
#include <iostream>
#define ll long long
#define INF 0x3f3f3f3f
const int N = 2e5 + 10;
const int M = 15;
using namespace std;
int n;
char dp[M][M];
bool vis_r[2 * M]; ///右斜对角线标记
bool vis_l[2 * M]; ///左斜对角线标记
bool vis[M]; ///列标记
int dis[M];
bool row[M];
int ans;
void dfs(int x,int y,int s){ //O(2^(n^2))
if(y==n) y=0,x++;
if(x==n){
if(s==n){
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << dp[i][j];
}
cout << endl;
}
cout << endl;
}
return;
}
//不放皇后
dfs(x,y+1,s);
if(!row[x]&&!vis[y]&&!vis_l[x+y]&&!vis_r[x-y+n]){
dp[x][y]='Q';
row[x]=vis[y]=vis_l[x+y]=vis_r[x-y+n]=1;
dfs(x,y+1,s+1);
row[x]=vis[y]=vis_l[x+y]=vis_r[x-y+n]=0;
dp[x][y]='.';
}
}
void DFS(int pos) { // O(n*n!)
if (pos >= n) { ///递归终止条件:放慢棋盘
// ans++; ///答案+1
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
cout << dp[i][j];
}
cout << endl;
}
cout << endl;
return;
}
for (int i = 0; i < n; i++) {
///若对应的列、左斜对角线、右斜对角线无棋子,可以放置
if (!vis[i] && !vis_l[i + pos] && !vis_r[n - i + pos]) {
dp[pos][i] = 'Q';
vis[i] = vis_l[i + pos] = vis_r[n - i + pos] = 1; ///标记走过
DFS(pos + 1); /// DFS下一行
vis[i] = vis_l[i + pos] = vis_r[n - i + pos] = 0; ///回溯
dp[pos][i] = '.';
}
}
}
void init() {
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dp[i][j] = '.';
}
}
}
int main() {
cin >> n;
init();
// 两种方法二选一
DFS(0); //法一
//dfs(0,0,0); //法二
// cout<<ans<<endl;
return 0;
}