AcWing 843. n-皇后问题(DFS回溯)

87 篇文章 7 订阅

题目链接

n-皇后问题是指将 n 个皇后放在 n∗n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。

**1_597ec77c49-8-queens.png**

现在给定整数n,请你输出所有的满足条件的棋子摆法。

输入格式

共一行,包含整数n。

输出格式

每个解决方案占n行,每行输出一个长度为n的字符串,用来表示完整的棋盘状态。

其中”.”表示某一个位置的方格状态为空,”Q”表示某一个位置的方格上摆着皇后。

每个方案输出完成后,输出一个空行。

输出方案的顺序任意,只要不重复且没有遗漏即可。

数据范围

1≤n≤9

输入样例:

4

输出样例:

.Q..
...Q
Q...
..Q.

..Q.
Q...
...Q
.Q..

思路:

深度优先遍历dfs。
每一行必定有一个皇后,对行进行深度遍历
对于第 r 行的第 i 个位置, ,判断每个点是否可以放皇后,如果可以,则放皇后,然后处理 r + 1 行。
直到 r = n,程序指行完毕。

答案:

#include <bits/stdc++.h>

#include <iostream>
#define ll long long
#define INF 0x3f3f3f3f
const int N = 2e5 + 10;
const int M = 15;
using namespace std;

int n;
char dp[M][M];
bool vis_r[2 * M];  ///右斜对角线标记
bool vis_l[2 * M];  ///左斜对角线标记
bool vis[M];        ///列标记
int dis[M];
bool row[M];
int ans;

void dfs(int x,int y,int s){   //O(2^(n^2))
    if(y==n) y=0,x++;
    if(x==n){
        if(s==n){
            for (int i = 0; i < n; i++) {
                for (int j = 0; j < n; j++) {
                    cout << dp[i][j];
                }
                cout << endl;
            }
            cout << endl;
        }
        return;
    }
    //不放皇后
    dfs(x,y+1,s);
    if(!row[x]&&!vis[y]&&!vis_l[x+y]&&!vis_r[x-y+n]){
        dp[x][y]='Q';
        row[x]=vis[y]=vis_l[x+y]=vis_r[x-y+n]=1;
        dfs(x,y+1,s+1);
        row[x]=vis[y]=vis_l[x+y]=vis_r[x-y+n]=0;
        dp[x][y]='.';
    }
}

void DFS(int pos) {  // O(n*n!)
    if (pos >= n) {  ///递归终止条件:放慢棋盘
        // ans++;  ///答案+1
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                cout << dp[i][j];
            }
            cout << endl;
        }
        cout << endl;
        return;
    }
    for (int i = 0; i < n; i++) {
        ///若对应的列、左斜对角线、右斜对角线无棋子,可以放置
        if (!vis[i] && !vis_l[i + pos] && !vis_r[n - i + pos]) {
            dp[pos][i] = 'Q';
            vis[i] = vis_l[i + pos] = vis_r[n - i + pos] = 1;  ///标记走过
            DFS(pos + 1);                                      /// DFS下一行
            vis[i] = vis_l[i + pos] = vis_r[n - i + pos] = 0;  ///回溯
            dp[pos][i] = '.';
        }
    }
}

void init() {
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            dp[i][j] = '.';
        }
    }
}

int main() {
    cin >> n;
    init();
    // 两种方法二选一
    DFS(0);  //法一
    //dfs(0,0,0);  //法二
    //    cout<<ans<<endl;
    return 0;
}

n皇后问题变形题链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值