- 博客(2)
- 收藏
- 关注
原创 DINOV3微调
先说一下博主目前的一个baseline的结果,此前在使用完整的图像进行分类任务的时候,整体的准确率大约只有71%左右,但后续我发现一张图像中会伴随着多种类别,因而后续根据每种类别进行了裁剪,确保每个数据只有一种类别,经过处理后,整体的Acc大约提升到了76%左右。目前呢,我又在进行损失计算的时候,加入标签平滑参数label_smoothing,并设置为0.1,降低模型对预测结果的一个置信度,虽然过拟合现象相比之前有所缓解,但整体的分类准确率并没有太大提升,仅有0.6%的提升。图1:Loss和Acc曲线图。
2026-01-30 17:16:46
508
原创 DINOv3
第二个坑呢则是,官方文档中虽然提到预训练权重可以通过Huaging Face Transformers在线获得,但是目前国内是没有权限的,所以需要先下载预训练的权重,预训练的权重可以通过官方文档中所列出的表格,点击申请,随后会发送到个人邮箱之中。(是担心提供的权重文件并不适配到别的尺寸输入)第二,在分割头的设计上,DINOv3是采用的VIT结构,那么是否分割头采用Transformer结构设计会更优异一些,笔者上述采用的分割头是使用的CNN进行的卷积核上采样(因为确实笔者很少使用transformer)。
2026-01-19 14:44:49
623
2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅