贪心算法
百度百科定义:贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。
搜索的基础复杂度(不加优化)是O(k^n)O(k n )(k指每个节点的选择分支的个数)的,动态规划的基础复杂度是O(nm)O(nm)(n,m分别指的是物品数量和背包大小),而贪心却只有O(n)O(n)。搜索适用范围最广,同样地时间复杂度也最高;动态规划适用范围有所缩小,但是时间复杂度也相应地提高了;贪心算法适用范围极窄,但却拥有极优的时间复杂度。(来自洛谷题解P1478)
一.背包问题(典例simplest)
问题描述:阿里巴巴走进了装满宝藏的藏宝洞。藏宝洞里面有
N(N≤100) 堆金币,第 i堆金币的总重量和总价值mi,vi(1≤mi,vi≤100)。阿里巴巴有一个承重量为 T(T≤1000) 的背包,但并没办法将全部的金币都装进去。他想装走尽可能多价值的金币。所有金币都可以随意分割,分割完的金币重量价值比(也就是单位价格)不变。请问阿里巴巴最多可以拿走多少价值的金币?
输入:
第一行两个整数 N、T
接下来 N 行,每行两个整数
mi,vi
输出格式:
一个整数表示答案,输出两位小数。
输入: 输出:
4 50 240.00
10 60
20 100
30 120
15 45
#include<iostream>
#include<algorithm>
#include<cstdio>
using namespace std;
struct three
{
double weight;
double value;
double p;//性价比;
}s[M];
bool cmp(three a,three b)
{
return a.p>b.p; //根据货物单位价值降序排列;
}
int main()
{
int n,i;
double m=0.0,sum=0.0,aweight=0.0;
cin>>n>>m;
for(i=0;i<n;i++)
{
cin>>s[i].weight>>s[i].value;
s[i].p=s[i].value/s[i].weight;
}
sort(s,s+n,cmp);
for(i=0;i<n;i++)
{
if(m>s[i].weight)
{
m-=s[i].weight;
sum+=s[i].value;
}
else{
sum+=m*1.0*s[i].p;
break;
}
}
printf("%.2lf",sum);
return 0;
}
贪心算法核心思想
1.针对同一对象的不同变化量定义结构体。如时间段的起始时间,数组元素交换顺序后保留原序号。
2.选取局部最优解,对特定对象(针对性)进行排序,可用#include中的sort函数进 行排序。(c++)
3. 特定问题特定分析。
贪心涉及的解法(洛谷上学到的)
1.优先队列