Java使用三种方式实现斐波那契数列求解

Java使用三种方式实现斐波那契数列求解

1.斐波那契数列的介绍

  • 斐波那契数列(Fibonacci sequence),又称黄金分割数列,因数学家莱昂纳多·斐波那契(Leonardo Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果
  • 斐波那契数列指的是这样一个数列:1,1,2,3,5,8,13,21,34,55,89…
  • 这个数列从第3项开始,每一项都等于前两项之和。

2.Java使用三种方式实现斐波那契数列求解

2.1 普通方法实现(递归)

package com.lagou.fibonacciMethod;

/**
 * @author 云梦归遥
 * @date 2022/5/22 20:47
 * @description 斐波那契 - 普通方法实现(递归)
 */
public class FibonacciMethod1 {
    public int fibonacci(int num){
        if (num <= 1) return num;
        // 大于 1 的情况
        return fibonacci(num - 1) + fibonacci(num - 2);
    }
}

2.2 动态规划实现

package com.lagou.fibonacciMethod;

/**
 * @author 云梦归遥
 * @date 2022/5/22 20:52
 * @description 斐波那契 - 递归分治 + 备忘录
 */
public class FibonacciMethod2 {
    private int[] array = null;

    public FibonacciMethod2(int num){
        this.array = new int[num + 1];
    }

    public int fibonacci(int num){
        if (num <= 1) return num;
        if (array[num] == 0){
            array[num] = fibonacci(num - 1) + fibonacci(num - 2);
        }
        return array[num];
    }
}

2.3 纯数组实现

package com.lagou.fibonacciMethod;

/**
 * @author 云梦归遥
 * @date 2022/5/22 21:19
 * @description 斐波那契 - 数组实现
 */
public class FibonacciMethod3 {
    public int fibonacci(int num){
        int[] array = new int[num + 1];
        if (num <= 1) return num;
        array[0] = 0; array[1] = 1;
        for (int i = 2; i <= num; i++){
            array[i] = array[i - 1] + array[i - 2];
        }
        return array[num];
    }
}

2.4 进行测试

package com.lagou.fibonacciMethod.test;

import com.lagou.fibonacciMethod.FibonacciMethod1;
import com.lagou.fibonacciMethod.FibonacciMethod2;
import com.lagou.fibonacciMethod.FibonacciMethod3;

/**
 * @author 云梦归遥
 * @date 2022/5/22 20:49
 * @description
 */
public class FibonacciMethod1Test {
    public static void main(String[] args) {
        long l = System.currentTimeMillis();
        FibonacciMethod1 fibonacciMethod1 = new FibonacciMethod1();
        int fibonacci = fibonacciMethod1.fibonacci(10);
        Long l1 = System.currentTimeMillis();
        System.out.println("普通方法实现斐波那契(10):" + fibonacci + ", 花费时间:" + (l1 - l));

        FibonacciMethod2 fibonacciMethod2 = new FibonacciMethod2(10);
        int fibonacci1 = fibonacciMethod2.fibonacci(10);
        Long l2 = System.currentTimeMillis();
        System.out.println("递归分治 + 备忘录 实现斐波那契(10):" + fibonacci1 + ", 花费时间:" + (l2 - l1));

        FibonacciMethod3 fibonacciMethod3 = new FibonacciMethod3();
        int fibonacci2 = fibonacciMethod3.fibonacci(10);
        Long l3 = System.currentTimeMillis();
        System.out.println("数组 实现斐波那契(10):" + fibonacci2 + ", 花费时间:" + (l3 - l2));
    }
}

在这里插入图片描述

package com.lagou.fibonacciMethod.test;

import com.lagou.fibonacciMethod.FibonacciMethod1;
import com.lagou.fibonacciMethod.FibonacciMethod2;
import com.lagou.fibonacciMethod.FibonacciMethod3;

/**
 * @author 云梦归遥
 * @date 2022/5/22 20:49
 * @description
 */
public class FibonacciMethod1Test {
    public static void main(String[] args) {
        long l = System.currentTimeMillis();
        FibonacciMethod1 fibonacciMethod1 = new FibonacciMethod1();
        int fibonacci = fibonacciMethod1.fibonacci(40);
        Long l1 = System.currentTimeMillis();
        System.out.println("普通方法实现斐波那契(40):" + fibonacci + ", 花费时间:" + (l1 - l));

        FibonacciMethod2 fibonacciMethod2 = new FibonacciMethod2(40);
        int fibonacci1 = fibonacciMethod2.fibonacci(40);
        Long l2 = System.currentTimeMillis();
        System.out.println("递归分治 + 备忘录 实现斐波那契(40):" + fibonacci1 + ", 花费时间:" + (l2 - l1));

        FibonacciMethod3 fibonacciMethod3 = new FibonacciMethod3();
        int fibonacci2 = fibonacciMethod3.fibonacci(40);
        Long l3 = System.currentTimeMillis();
        System.out.println("数组 实现斐波那契(40):" + fibonacci2 + ", 花费时间:" + (l3 - l2));
    }
}

在这里插入图片描述

3.总结

  • 进行测试时发现,当所求得数比较小的时候,普通方式是最快的,因为没有数组和对象的创建;
  • 当所求的数比较大时,后两种会非常快,因为递归的深度太深,有太多重复计算,如果用数组保存计算结果,将会远远比计算更快
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值