资料:归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。
由图绿色部分可以看出,归并排序是将两个有序的数组合并成一个,如此往复,直到合并成总数组。
那么如何得到有序的两个数组呢?接下来为你解答。
分治分治,先分后治
分:
将序列分成足够小的几份;
如: {2,11,10,5,4,13,9,7,8,1,12,3,6,15,14}
分成 :
- {2},{11}
- {10},{5}
- {4},{13}
- {9},{7}
- {8},{1}
- {12},{3}
- {6},{15}
- {14}
如上过程,将数组不断分不断分,最终分成只含有一个元素的数组不就是有序的数组了吗?
治:
然后将有序的数组一个一个合并(降序升序自定,此处为升序),最终合并成总数组。
-
{2},{11} ——> {11,2} ﹉{10},{5} ——> {5,10}﹉{4},{13} ——> {4,13}﹉{9},{7} ——> {7,9}﹉{8},{1} ——> {1,8}﹉{12},{3} ——> {3,12}﹉{6},{15} ——> {15,6}﹉{14} ——> {14}
-
{2,5,10,11} {4,7,9,13} {1,3,8,12} {6,14,15}
-
{2,4,5,7,9,10,11,13} {1,3,6,8,12,14,15}
-
{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
总流程如图所示:
代码如下:
#include<stdio.h>
void Merge(int a[], int b[], int start, int mid, int end)
{
int i = start, j = mid+1, k = start;
while(i < mid+1 && j < end+1)
{
if(a[i] <= a[j])
b[k++] = a[i++];
else
b[k++] = a[j++];
}
// 此步执行完成,总会有未全部存完的部分
while(i!=mid+1) // 假如左半部分未全部存完
b[k++] = a[i++];
while(j!=end+1) // 假如右半部分未全部存完
b[k++] = a[j++];
for(i = start; i < end+1; i++) // 将已经排序好的有序序列 重新赋回原数组 此为下一步归并的基础
a[i] = b[i];
}
void Merge_sort(int a[], int b[], int start, int end)
{
if(start >= end) return;
int mid = start + (end - start)/2; // 每次都从中间位置分成两份
Merge_sort(a,b,start,mid); // 左半部分继续分
Merge_sort(a,b,mid+1,end); // 右半部分继续分
Merge(a,b,start,mid,end); // 直到不能再分了,进行归并
}
int main()
{
int a[] = {2,11,10,5,4,13,9,7,8,1,12,3,6,15,14};
int b[15]={0}; // 定义中间数组用来归并
int i;
Merge_sort(a,b,0,14);
for(i = 0; i < 15; i++)
printf("%d ",a[i]);
return 0;
}
归并排序为稳定排序(稳定排序: 假如 ai == aj&&i<j ,经过排序后,ai依旧在aj前面)
时间复杂度为: O(n logn)
归并排序一般用来求逆序数
逆序数: 在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。一个排列中所有逆序总数叫做这个排列的逆序数。也就是说,对于n个不同的元素,先规定各元素之间有一个标准次序(例如n个 不同的自然数,可规定从小到大为标准次序),于是在这n个元素的任一排列中,当某两个元素的先后次序与标准次序不同时,就说有1个逆序。一个排列中所有逆序总数叫做这个排列的逆序数。(来自百度)
如: 5 6 3 4 2 的逆序数为 3+3+1+1=8
(5大于 3,4,2 逆序数为 3; 6大于3,4,2 逆序数为 3; 3大于2 逆序数为 1; 四大于2逆序数为 1)
又例如两个有序的数组需要归并,并求逆序数
{4,7,9,12} 与 {3,5,8,13}
左边数组开始的 4 大于 右边数组开始的 3 。又因为都是有序的数组,所以左边数组 4 接下来是升序的并且都会比 3 大。所以逆序数数值加 4 以此类推求出总的逆序数。
所以由此可以知道只要在归并操作里简单加一笔。
如下:
while(i < mid+1 && j < end+1)
{
if(a[i] <= a[j])
b[k++] = a[i++];
else
{
b[k++] = a[j++];
sum+= mid - i + 1; // 此处为加的那一笔
}
}
求逆序数还可以用简单暴力的方法,大家也都想得到,但时间复杂度为O(n*n),效率低只适合数组长度较小的题。
还有树状数组求解,本人学艺不精,等学会后马上写博客😁