最普通的矩阵乘法,需要乘
n
3
n^3
n3次,时间复杂度为
O
(
n
3
)
O(n^3)
O(n3)
分治递归计算矩阵相乘复杂度也为
O
(
n
3
)
O(n^3)
O(n3),没有体现优越性
使用Strassen计算每一步递归中乘法次数由8次变为7次(以增加减法次数为代价),时间复杂度下降为
O
(
n
l
g
7
)
O(n^{lg7})
O(nlg7)

在矩阵维数很大时增加一次乘法的代价远超过多次加减法的代价。
矩阵乘法优化
本文介绍了矩阵乘法的基本算法及其时间复杂度为O(n³),接着对比了分治递归法并未提升效率的情况,并深入探讨了Strassen算法如何通过减少乘法次数来降低复杂度至O(n^{lg7}

5320

被折叠的 条评论
为什么被折叠?



