Strassen 矩阵乘法

矩阵乘法优化
本文介绍了矩阵乘法的基本算法及其时间复杂度为O(n³),接着对比了分治递归法并未提升效率的情况,并深入探讨了Strassen算法如何通过减少乘法次数来降低复杂度至O(n^{lg7}

最普通的矩阵乘法,需要乘 n 3 n^3 n3次,时间复杂度为 O ( n 3 ) O(n^3) O(n3)

分治递归计算矩阵相乘复杂度也为 O ( n 3 ) O(n^3) O(n3),没有体现优越性

使用Strassen计算每一步递归中乘法次数由8次变为7次(以增加减法次数为代价),时间复杂度下降为 O ( n l g 7 ) O(n^{lg7}) O(nlg7)


在这里插入图片描述

在矩阵维数很大时增加一次乘法的代价远超过多次加减法的代价。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值