K-Means聚类算法

K-Means聚类算法是一种迭代的分类方法,用于将样本根据坐标距离划分为预设的K类。算法通过不断调整聚类中心来达到最佳划分效果。文中提供了一个MATLAB代码示例,展示了如何使用K-Means进行聚类并绘制结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 概述

    K-Means聚类算法也叫K-均值聚类算法
    简单来说,可以利用它来进行分类。
    怎么分类呢?
    你知道你有的这些样本的坐标之后,距离相近的点就会分为一类,如果你知道有三类,那他会根据坐标之间的距离划分为三类。

  2. 定义
    k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。

  3. 原理
    原理图

  4. 代码
    以下是使用MATLAB实现k-means聚类算法并绘制聚类结果的代码示例:
    function kmeans_plot(X, k)
    % 初始化聚类中心
    m = size(X, 1); % 数据点的数量
    centroids = X(randperm(m, k), 😃;
    previous_centroids = centroids;

    % 迭代聚类
    converged = false;
    while ~converged
    % 为每个数据点分配到最近的聚类中心
    distances = sqdist(X, centroids);
    [~, cluster_idx] = min(distances, [], 2);

    % 更新聚类中心的位置
    for j = 1:k
        centroids(j
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cauliflower呵呵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值