笔记:辗转相除法原理

假设gcd(a,b)是自然数a,b的最大公约数,a除b所得到的商和余数分别为p和q,所以a=b✖p+q,右边的式子可以提出一个gcd(b,q),也就是说gcd(b,q)也能整除a,而它又能整除b,所以gcd(b,q)<=gcd(a,b)。再有q=a-b✖q,右边的式子可以提出一个gcd(a,b),也就是gcd(a,b)可以整除q,也能整除b,所以gcd(a,b)<=gcd(b,q)。两者结合,那么,gcd(a,b)=gcd(b,q)即gcd(b,a%b)。通过不断的操作下去,第二个操作数会不断变小(原因:第一次操作,a%b一定<a,第二次操作,第二个操作数一定小于b,所以递归思考下去,第二个操作数会不断变小),所以最终会得到gcd(c,0),而0和c的最大公约数就是c,所以最终返回c就OK了。

代码:

int gcd(int a,int b)
{
    if(b==0)
        return a;
    return gcd(b,a%b);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值