题目
数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。
示例 1:
输入:n = 3
输出:[“((()))”,“(()())”,“(())()”,“()(())”,“()()()”]
示例 2:
输入:n = 1
输出:[“()”]
提示:
- 1 <= n <= 8
思路
算法:
dfs算法 O(n * 22n)
n
对括号一共有 2n
个位置,2n
个位置任意放左括号或者右括号有 22n 种可能。
用二进制数表示每一种情况,某一位为 1 表示放左括号,为 0 表示放右括号,对每一种情况进行分析是否为合法的括号序列。
复杂度:时间复杂度为 O(n * 22n) ,空间复杂度为 O(22n)
代码
C++代码:
class Solution {
public:
vector<string> generateParenthesis(int n) {
vector<string> ans;
int i,m=1<<(2*n),j,d=2*n;
for(i=0;i<m;i++){
int t=0,l=0,r=0;
string s="";
bool f=true;
for(j=0;j<d;j++){
if(i>>j&1){
t++;
l++;
s+='(';
}else{
r++;
s+=')';
}
if(r>l) f=false;
}
if(t!=n||!f) continue;
ans.push_back(s);
}
return ans;
}
};
python3代码:
class Solution:
def generateParenthesis(self, n: int) -> List[str]:
res = []
self.dfs(n, n, "", res)
return res
def dfs(self, l, r, path, res):
if l == r == 0:
res.append(path)
return
if l > r or l < 0 or r < 0:
return
self.dfs(l - 1, r, path + "(", res)
self.dfs(l, r - 1, path + ")", res)