Speech Separation,Deep Clustering,PIT

首先呢,我们来看看什么是Speech Separation问题。
在这里插入图片描述人们可以在一个嘈杂的环境中识别出一个特定声音的来源,这个叫做鸡尾酒会效应。
在这里插入图片描述这种应用到机器学习领域,我们要做的就是语音增强:语音-非语音分离(降噪)。
在这里插入图片描述而Speech Separation就是做不同种类声音的分离的识别工作。
在这里插入图片描述那么我们首先规定一下,本文主要讨论两种声音,单一麦克风以及独立的演讲者(即培训和测试演讲者完全不同)的识别工作,在我们收集数据时,我们可以收集两端时间相同的声音讯号,然后就同时播放形成一段新的声音讯号就可以了。
在这里插入图片描述首先我们先来思考一个问题,我们怎样来评估一个系统是否可以满足我们的需求呢?
在这里插入图片描述如上图所示,我们如果使用SNR的技术来评估我们的系统的话,会有一个致命的问题,我们的X*只要越大,那么我们的评估结果就会更高,这肯定不是我们想要的,所以我们有以下的改进措施。
在这里插入图片描述上面这种方法是SI-SDR,我们可以发现,其实相当于将X分解成了两个相互垂直的方向,这样的话,就算X的总长度变大,两个方向会同等比例的放大,而我们计算的是二者的范数之比,其实就对于我们的结果没有影响了。那么接下来呢,我们来讲讲具体怎么实现这个评估的过程。
在这里插入图片描述我们可以看看,先对原始数据进行SI-SDR1,接着经过Speaker Separation之后,我们对结果进行SI-SDR2,接着对两次的结果进行修正。并且我们要注意,尽量不要让我们的模型结果受到性别,腔调等这些因素的影响。
接下来,我们介绍一种解决Speech Separation的方法— Deep Clustering。
在这里插入图片描述我们可以来看看这种方法,就相当于将我们输入的声音讯号用一个矩阵来表述,然后通过我们的模型,将其再分离成两个矩阵。接下来我们可以具体来看看。
在这里插入图片描述在这里插入图片描述我们可以看看,就是如果是一个二划分,那么我们就可以依靠0,1来划分两个声音讯号,如果相似就记为1,反之记为0.那么我们可不可以尝试用一个三维向量来表征一个声音讯号呢?
在这里插入图片描述在这里插入图片描述在这里插入图片描述如上面几张图所示,我们可以根据一个格子及其周围的几个格子来形成一个三维向量,然后我们可以根据不同元素之间是Different Clusters还是Same Clusters就可以对结果进行划分。
在这里插入图片描述我们可以看到这种方法就可以使Same Clusters更加的接近,而使Different Clusters之间更加的远离,然后再将二者分离,便可以达到我们的预期了。
接下来,我们再来介绍Permutation Invariant Training 技术,也就是PIT。
在这里插入图片描述PIT呢,就是给定了一个说话者的分离模型,然后我们就可以进行分离效果,就相当于我们有一个Ө模型,然后我们分别尝试将X1,X2放在第一个输出的情况,分别计算Ө的loss损失,然后就可以判断好坏了。
在这里插入图片描述首先我们初始化数据,所以在最开始其实效果并不是很好,但是当数据量很大的时候,我们就会发现PIT技术是很有效果的。
在这里插入图片描述上图我们也可看出PIT技术对于准确度的提升其实也是很明显的。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值