贪心算法

贪心算法基于最优子结构和贪心选择性质,通常用于从大集合中选择小集合。虽然不保证全局最优,但在某些问题上能得出最优解或近似最优解。文章通过装箱问题为例,阐述了贪心算法的运用,并提供了源代码实现。
摘要由CSDN通过智能技术生成

贪心算法基本要素:
(1)最优子结构性质
(2)贪心选择性质

贪心算法都可以用动态规划来做

贪心算法总是作出当前看来最好的选择,也就是说贪心算法并不从整体最优考虑,它所作的选择只是在某种意义上的局部最优选择。虽然贪心算法不能对所有的问题都得到整体最优解,但对许多问题通它都能产生整体最优解。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。

从一个大集合中选择到一个小集合中,一般用到贪心算法。

列题:
选取了一道拼题网上的题作为例题来使大家更好的理解贪心算法
装箱问题
假设有N项物品,大小分别为s
s1 ,s2、…、s​i、…、s​N,,其中si为满足1≤s​i≤100的整数。要把这些物品装入到容量为100的一批箱子(序号1-N)中。装箱方法是:对每项物品, 顺序扫描箱子,把该物品放入足以能够容下它的第一个箱子中。请写一个程序模拟这种装箱过程,并输出每个物品所在的箱子序号,以及放置全部物品所需的箱子数目。

输入格式:
输入第一行给出物品个数N(≤1000);第二行给出N个正整数s
​i(1≤s​i≤100,表示第i项物品的大小)。

输出格式:
按照输入顺序输出每个物品的大小及其所在的箱子序号,每个物品占1行,最后一行输出所需的箱子数目。

输入样例:
8
60 70 80 90 30 40 10 20
输出样例:
60 1
70 2
80 3
90 4
30 1
40 5
10 1
20 2
5

源代码:

#include<iostream>
using namespace std;
int main()
{ 
    int s[100][2]={0};
	int number=1;
	int n;
	cin>>n;
	int i,j;
	//输入
	for(i=0;i<n;i++)
	{
            cin>>s[i][0];//s[i][1]默认为物品所装箱子的初始号,都为0
	}
	
	for(i=0;i<n;i++)
    {
	   int m=0;//初始化每个箱子里物品的总重量
       for(j=i;j<n;j++)
	   {
          if((m+s[j][0]<=100)&&(s[j][1]==0))
		  {
			     m=m+s[j][0];
				 s[j][1]=number;

		  } 
	   }
	   number++;//装完一个箱子箱子号就加一;
	   //判断物品是否都已经装进了箱子
       int x=1;
	   for(j=0;j<n;j++)
	   {
          x=x*s[j][1];
	   }
	   if(x!=0)
	   {  break;}
	  
	}
	for(i=0;i<n;i++)
	{
        cout<<s[i][0]<<' '<<s[i][1];
		cout<<endl;
	}
	cout<<number-1<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值