贪心算法基本要素:
(1)最优子结构性质
(2)贪心选择性质
贪心算法都可以用动态规划来做
贪心算法总是作出当前看来最好的选择,也就是说贪心算法并不从整体最优考虑,它所作的选择只是在某种意义上的局部最优选择。虽然贪心算法不能对所有的问题都得到整体最优解,但对许多问题通它都能产生整体最优解。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。
从一个大集合中选择到一个小集合中,一般用到贪心算法。
列题:
选取了一道拼题网上的题作为例题来使大家更好的理解贪心算法
装箱问题
假设有N项物品,大小分别为s
s1 ,s2、…、si、…、sN,,其中si为满足1≤si≤100的整数。要把这些物品装入到容量为100的一批箱子(序号1-N)中。装箱方法是:对每项物品, 顺序扫描箱子,把该物品放入足以能够容下它的第一个箱子中。请写一个程序模拟这种装箱过程,并输出每个物品所在的箱子序号,以及放置全部物品所需的箱子数目。
输入格式:
输入第一行给出物品个数N(≤1000);第二行给出N个正整数s
i(1≤si≤100,表示第i项物品的大小)。
输出格式:
按照输入顺序输出每个物品的大小及其所在的箱子序号,每个物品占1行,最后一行输出所需的箱子数目。
输入样例:
8
60 70 80 90 30 40 10 20
输出样例:
60 1
70 2
80 3
90 4
30 1
40 5
10 1
20 2
5
源代码:
#include<iostream>
using namespace std;
int main()
{
int s[100][2]={0};
int number=1;
int n;
cin>>n;
int i,j;
//输入
for(i=0;i<n;i++)
{
cin>>s[i][0];//s[i][1]默认为物品所装箱子的初始号,都为0
}
for(i=0;i<n;i++)
{
int m=0;//初始化每个箱子里物品的总重量
for(j=i;j<n;j++)
{
if((m+s[j][0]<=100)&&(s[j][1]==0))
{
m=m+s[j][0];
s[j][1]=number;
}
}
number++;//装完一个箱子箱子号就加一;
//判断物品是否都已经装进了箱子
int x=1;
for(j=0;j<n;j++)
{
x=x*s[j][1];
}
if(x!=0)
{ break;}
}
for(i=0;i<n;i++)
{
cout<<s[i][0]<<' '<<s[i][1];
cout<<endl;
}
cout<<number-1<<endl;
return 0;
}