A:563
#include <iostream>
using namespace std;
int main(int argc, char** argv) {
int cnt = 0;
for(int i = 1; i <= 2020; i++){
int num = i;
while(num){
if(num % 10 == 2){
cnt++;
break;
}
num /= 10;
}
}
cout<<cnt;
return 0;
}
B:20312088
#include <iostream>
#include <cstring>
#include <algorithm>
#include <set>
#include <queue>
using namespace std;
typedef long long LL;
typedef pair<int,int> PII;
int st[10000][10000];
struct Node{
int x,y,step;
};
int dx[4] = {0,1,0,-1}, dy[4] = {1,0,-1,0};
LL bfs(){
queue<Node> q;
q.push({3000,3000,0});
q.push({2020+3000,11+3000,0});
q.push({11+3000,14+3000,0});
q.push({2000+3000,2000+3000,0});
LL cnt = 0;
while(q.size()){
Node t = q.front(); q.pop();
st[t.x][t.y] = 1;
cnt++;
if(t.step == 2020) continue;
for(int i = 0; i < 4; i++){
int a = t.x + dx[i];
int b = t.y + dy[i];
if(!st[a][b]){
q.push({a,b,t.step+1});
st[a][b] = 1;
}
}
}
return cnt;
}
int main(int argc, char** argv) {
cout<<bfs();
return 0;
}
C:39001250856960000
对于一个大于1正整数n可以分解质因数n = p1^a1 * p2^a2 * … * pk^ak,约数个数定理:
n的正约数个数 = (a1 + 1) * (a2 + 1) * … * (ak + 1)
#include <iostream>
using namespace std;
typedef long long LL;
int cnt[100000];
int main(int argc, char** argv) {
LL p = 1;
for(int i = 2; i <= 100; i++){
p *= i;
for(int j = 2; p >= j; j++){
if(p % j == 0){
while(p % j == 0){
cnt[j] ++;
p /= j;
}
}
}
}
LL res = 1;
for(int i = 1; i <= 200; i++) res *= cnt[i] + 1;
cout<<res;
return 0;
}
D:动态规划
3616159
#include <iostream>
#include <queue>
#include <cstring>
#include <set>
using namespace std;
typedef long long LL;
int f[300];
int main(){
//string s = "lanqiao";
string s = "tocyjkdzcieoiodfpbgcncsrjbhmugdnojjddhllnofawllbhfiadgdcdjstemphmnjihecoapdjjrprrqnhgccevdarufmliqijgihhfgdcmxvicfauachlifhafpdccfseflcdgjncadfclvfmadvrnaaahahndsikzssoywakgnfjjaihtniptwoulxbaeqkqhfwl";
int n = s.length();
for(int i = 0; i < n; i++){
f[i] = 1;
for(int j = 0; j < i; j++){
if(s[i] > s[j]) f[i] += f[j];
else if(s[i] == s[j]) f[i] -= f[j];
}
}
int cnt = 0;
for(int i = 0; i < n; i++) cnt += f[i];
cout<<cnt;
return 0;
}
E:玩具蛇
答案:552
#include <iostream>
#include <cstring>
#include <algorithm>
#include <set>
#include <vector>
using namespace std;
typedef long long LL;
const int N = 10;
int path[N][N];
bool st[N][N];
LL cnt;
int dx[4] = {0,1,0,-1}, dy[4] = {1,0,-1,0};
vector<int> v;
void dfs(int x,int y,int k){
if(k == 16){
cnt++;
return;
}else{
st[x][y] = true;
for(int i = 0; i < 4; i++){
int a = x + dx[i];
int b = y + dy[i];
if(a < 0 || a >= 4 || b < 0 || b >= 4) continue;
if(st[a][b]) continue;
dfs(a,b,k+1);
}
st[x][y] = false;
}
}
int main(){
for(int i = 0; i < 4; i++)
for(int j = 0; j < 4; j++){
memset(st,0,sizeof st);
dfs(i,j,1);
}
cout<<cnt<<endl;
return 0;
}
F : 最长公共子序列模型
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashMap;
import java.util.Map;
public class Main {
static int N = 1010;
static int n,m;
static int f[][] = new int[N][N];
static int a[] = new int[N];
static int b[] = new int[N];
static int num = 0;
static Map<String, Integer> map = new HashMap<String, Integer>();
static int get_Arrays(String s,int p[]) {
int cnt = 0, st = 0;
for(int i = 1; i < s.length(); i++) {
if(s.charAt(i) >= 'A' && s.charAt(i) <= 'Z') {
String key = s.substring(st,i);
if(map.containsKey(key)) p[++cnt] = map.get(key);
else {
map.put(key, ++num);
p[++cnt] = num;
}
st = i;
}
}
String key = s.substring(st,s.length());
if(map.containsKey(key)) p[++cnt] = map.get(key);
else {
map.put(key, ++num);
p[++cnt] = num;
}
return cnt;
}
public static void main(String[] args) throws IOException {
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String s1 = br.readLine();
String s2 = br.readLine();
n = get_Arrays(s1, a);
m = get_Arrays(s2, b);
int res = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) {
f[i][j] = Math.max(f[i-1][j], f[i][j-1]);
if(a[i] == b[j]) {
f[i][j] = Math.max(f[i][j], f[i-1][j-1] + 1);
}
res = Math.max(res, f[i][j]);
}
System.out.println(res);
}
}
皮亚诺曲线:
#include <iostream>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
LL k,x1,y1,x2,y2;
LL dfs(LL x,LL y,LL n){
LL pre_len = pow(3,n - 1); //小一阶的长度
LL sum_len = 0; //总长度
LL x3 = x / pre_len, y3 = y / pre_len;
//判断位置
LL flag = 0;
if(x3 == 0){
if(y3 == 0) flag = 1;
else if(y3 == 1) flag = 2;
else if(y3 == 2) flag = 3;
}
else if(x3 == 1){
if(y3 == 2) flag = 4;
else if(y3 == 1) flag = 5;
else flag = 6;
}else{
if(y3 == 0) flag = 7;
else if(y3 == 1) flag = 8;
else flag = 9;
}
sum_len += pre_len * pre_len * (flag - 1);
if(n == 1) return sum_len;
LL pre_x, pre_y; //下一层递归的坐标
if(flag == 1) pre_x = x, pre_y = y;
else if(flag == 2) pre_x = -(x - pre_len), pre_y = y - pre_len;
else if(flag == 3) pre_x = x, pre_y = y - 2*pre_len;
else if(flag == 4) pre_x = x - pre_len, pre_y = -(y - 2*pre_len);
else if(flag == 5) pre_x = -(x - pre_len), pre_y = -(y - pre_len);
else if(flag == 6) pre_x = x - pre_len, pre_y = -y;
else if(flag == 7) pre_x = x - 2*pre_len, pre_y = y;
else if(flag == 8) pre_x = -(x - 2*pre_len), pre_y = y - pre_len;
else pre_x = x - 2*pre_len, pre_y = y - 2*pre_len;
return sum_len + dfs(pre_x,pre_y,n - 1);
}
int main(){
cin >>k>>x1>>y1>>x2>>y2;
cout<<abs(dfs(x1,y1,k) - dfs(x2,y2,k));
}