做全表扫描时数据表的内存大于 MySQL 内存,会不会被打爆?

本文探讨了对20GB大表全表扫描时,如何避免内存溢出,重点介绍了InnoDB引擎的内存管理机制,LRU算法优化,以及为何扫描历史数据表可能导致性能问题。作者揭示了如何通过调整BufferPool策略确保高命中率和响应速度,适合数据库管理员和开发者阅读。
摘要由CSDN通过智能技术生成

我查这么多数据,会不会把数据库内存打爆?

我的数据库内存只有10G,现在我要对一个20G的大表做全表扫描,会不会把数据库内存(buffer pool)占满然后报OOM的错误?

答案是不会的。

InnoDB的数据是保存在主键索引上面的(主键索引最全),所以全表扫描扫描的是主键索引,由于没有其他的判定条件,所以查询到的每一行都放到结果集里面,然后返回给客户端。

这个结果集在哪呢?

实际上,服务端并不会保存一个完成的结果集之后在发送。 取数据和发数据的流程是这样的:

  1. 获取一行,写到 net_buffer 中。这块内存的大小是由参数 net_buffer_length 定义的,默认是 16k。
  2. 重复获取行,直到 net_buffer 写满,调用网络接口发出去。
  3. 如果发送成功(是否收到ack),就清空 net_buffer,然后继续取下一行,并写入 net_buffer。
  4. 如果发送函数返回 EAGAINWSAEWOULDBLOCK,就表示本地网络栈**(socket send buffer)**写满了,进入等待。直到网络栈重新可写,再继续发送。

这个过程对应的流程图如下:

看完上面的流程图,可以得到:

  1. 即便表的数据比我MySQL的内存大得多,占用的内存也仅仅是 net_buffer_length 大小,所以并不会把内存占满。
  2. socket send buffer 也不可能达到 200G ,如果 socket send buffer 被写满,就会暂停读数据的流程。

也就是说 MySQL 是边读边发的,如果客户端接收的速度跟不上 MySQL 服务端发送的速度,就会造成发送的时间变长。

如果你看到 State 的值一直处于“Sending to client”,就表示服务器端的网络栈写满了。

如果客户端使用–quick 参数,会使用 mysql_use_result 方法。这个方法是读一行处理一行。你可以想象一下,假设有一个业务的逻辑比较复杂,每读一行数据以后要处理的逻辑如果很慢,就会导致客户端要过很久才会去取下一行数据,可能就会出现如图所示(Sending to client)的这种情况。

因此,对于正常的线上业务来说,如果一个查询的返回结果不会很多的话,建议你使用 mysql_store_result 这个接口,直接把查询结果保存到本地内存(客户端本地)。

如果要快速减少处于这个状态的线程的话,将 net_buffer_length 参数设置为一个更大的值是一个可选方案。

与“Sending to client”长相很类似的一个状态是“Sending data” ,但是经过排查网络没有问题。

实际上,一个查询语句的状态变化是这样的:

  • MySQL 查询语句进入执行阶段后,首先把状态设置成“Sending data”;
  • 然后,发送执行结果的列相关的信息(meta data) 给客户端;
  • 再继续执行语句的流程;
  • 执行完成后,把状态设置成空字符串。

也就是说,“Sending data”并不一定是指“正在发送数据”,而可能是处于执行器过程中的任意阶段。

仅当一个线程处于“等待客户端接收结果”的状态,才会显示"Sending to client";而如果显示成“Sending data”,它的意思只是“正在执行”。

在 server 层的处理逻辑我们都清楚了,在 InnoDB 引擎里面又是怎么处理的呢? 扫描全表会不会对引擎系统造成影响呢?

全表扫描对 InnoDB 的影响

内存的数据页是在 Buffer Pool (BP) 中管理的,在 WAL 里 Buffer Pool 起到了加速更新的作用。而实际上,Buffer Pool 还有一个更重要的作用,就是加速查询。

而 Buffer Pool 对查询的加速效果,依赖于一个重要的指标,即:内存命中率。

可以在 show engine innodb status 结果中,查看一个系统当前的 BP 命中率。一般情况下,一个稳定服务的线上系统,要保证响应时间符合要求的话,内存命中率要在 99% 以上。

InnoDB Buffer Pool 的大小是由参数 innodb_buffer_pool_size 确定的,一般建议设置成可用物理内存的 60%~80%。

在大约十年前,单机的数据量是上百个 G,而物理内存是几个 G;现在虽然很多服务器都能有 128G 甚至更高的内存,但是单机的数据量却达到了 T 级别。

所以,innodb_buffer_pool_size 小于磁盘的数据量是很常见的。如果一个 Buffer Pool 满了,而又要从磁盘读入一个数据页,那肯定是要淘汰一个旧数据页的。

InnoDB淘汰的逻辑是怎样的呢?

InnoDB 内存管理用的是最近最少使用 (Least Recently Used, LRU) 算法,这个算法的核心就是淘汰最久未使用的数据。

下图是一个 LRU 算法的基本模型。

InnoDB 管理 Buffer Pool 的 LRU 算法,是用链表来实现的。

  1. 在图中的状态 1 里,链表头部是 P1,表示 P1 是最近刚刚被访问过的数据页;假设内存里只能放下这么多数据页;
  2. 这时候有一个读请求访问 P3,因此变成状态 2,P3 被移到最前面;
  3. 状态 3 表示,这次访问的数据页是不存在于链表中的,所以需要在 Buffer Pool 中新申请一个数据页 Px,加到链表头部。但是由于内存已经满了,不能申请新的内存。于是,会清空链表末尾 Pm 这个数据页的内存,存入 Px 的内容,然后放到链表头部。
  4. 从效果上看,就是最久没有被访问的数据页 Pm,被淘汰了。

这个算法乍一看上去没什么问题,但是如果考虑到要做一个全表扫描,会不会有问题呢?

假设按照这个算法,我们要扫描一个 20G 的表,而这个表是一个历史数据表,平时没有业务访问它。那么,按照这个算法扫描的话,就会把当前的 Buffer Pool 里的数据全部淘汰掉,存入扫描过程中访问到的数据页的内容。

也就是说 Buffer Pool 里面主要放的是这个历史数据表的数据。对于一个正在做业务服务的库,这可不妙。你会看到,Buffer Pool 的内存命中率急剧下降,磁盘压力增加,SQL 语句响应变慢。

所以,InnoDB 不能直接使用这个 LRU 算法。实际上,InnoDB 对 LRU 算法做了改进。

在 InnoDB 实现上,按照 5:3 的比例把整个 LRU 链表分成了 young 区域和 old 区域。图中 LRU_old 指向的就是 old 区域的第一个位置,是整个链表的 5/8 处。也就是说,靠近链表头部的 5/8 是 young 区域,靠近链表尾部的 3/8 是 old 区域。

改进后的 LRU 算法执行流程变成了下面这样。

  1. 图 7 中状态 1,要访问数据页 P3,由于 P3 在 young 区域,因此和优化前的 LRU 算法一样,将其移到链表头部,变成状态 2。
  2. 之后要访问一个新的不存在于当前链表的数据页,这时候依然是淘汰掉数据页 Pm,但是新插入的数据页 Px,是放在 LRU_old 处。
  3. 处于 old 区域的数据页,每次被访问的时候都要做下面这个判断:
    • 若这个数据页在 LRU 链表中存在的时间超过了 1 秒,就把它移动到链表头部;
    • 如果这个数据页在 LRU 链表中存在的时间短于 1 秒,位置保持不变。1 秒这个时间,是由参数 innodb_old_blocks_time 控制的。其默认值是 1000,单位毫秒。

可以看到,这个策略最大的收益,就是在扫描这个大表的过程中,虽然也用到了 Buffer Pool,但是对 young 区域完全没有影响,从而保证了 Buffer Pool 响应正常业务的查询命中率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值