问题描述
任何一个正整数都可以用2的幂次方表示。例如:
137=27+23+20
同时约定方次用括号来表示,即ab 可表示为a(b)。
由此可知,137可表示为:
2(7)+2(3)+2(0)
进一步:7= 22+2+20 (21用2表示)
3=2+20
所以最后137可表示为:
2(2(2)+2+2(0))+2(2+2(0))+2(0)
又如:
1315=210 +28 +25 +2+1
所以1315最后可表示为:
2(2(2+2(0))+2)+2(2(2+2(0)))+2(2(2)+2(0))+2+2(0)
输入格式
输入包含一个正整数N(N<=20000),为要求分解的整数。
输出格式
程序输出包含一行字符串,为符合约定的n的0,2表示(在表示中不能有空格)
import java.util.Scanner;
public class 幂式分解1 {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
dfs(n);
}
public static void dfs(int x){
boolean cnt = false;
while (x!=0){
//如果x不等于0的情况下,
if(x!=0){
if(cnt){
System.out.print("+2");
}else {
System.out.print("2");
}
}
for(int i = 1 ; i <= 15 ; i ++) {
//如果大于2的i次幂大于x 就减去2的i-1次幂
if((1 << i) > x){
x -= 1 << (i-1);
if(x!=0){
cnt = true;
}
//后面用的i-1,幂的和在范围0-2
if(i-1 == 2){
System.out.print("(2)");
}else if(i-1 == 0){
System.out.print("(0)");
}else if(i-1 > 2){
System.out.print("(");
//这个算他的幂的和
dfs(i-1);
System.out.print(")");
}
//这部很关键,跳出循环
break;
}
}
}
}
}