目录
题目集总目录
学习指路博客 二叉搜索树与平衡二叉树
04-树4 是否同一棵二叉搜索树 (25分)
小白专场将详细介绍C语言实现方法,属于基本训练,一定要做
题目大意
对于输入的各种插入序列,判断它们是否能生成一样的二叉搜索树。
思路
1.分别建两棵树的判别方法
2.不建树直接判断序列
3.建一棵树再判别其他序列是否与该树一致
这里采用的是思路3
代码
#include <iostream>
using namespace std;
#define maxsize 11
typedef struct TNode* Tree;
struct TNode {
int data;
Tree left,right;
int flag; //判断是否访问过
};
void Clear(Tree R) { //清除标记
if(!R) return;
R->flag = 0;
Clear(R->left);
Clear(R->right);
}
void FreeTree(Tree R) { //清空该树
if(!R) return;
FreeTree(R->left);
FreeTree(R->right);
delete R;
}
Tree NewNode(int data) {//
Tree R = new TNode;
R->data = data;
R->left = R->right = NULL;
R->flag = 0;
return R;
}
Tree BST_Insert(int data, Tree R) {
if (!R) R = NewNode(data);
else {
if(data > R->data) //大于该结点,插入到右子树
R->right = BST_Insert(data, R->right);
else //小于或等于该结点,插入到左子树
R->left = BST_Insert(data, R->left);
}
return R;
}
Tree Build(int N) {
Tree R = NULL;
int x;
cin >> x;
R = NewNode(x);
for(int i = 1; i < N; ++i) {
cin >> x;
R = BST_Insert(x, R);
}
return R;
}
bool check(int data, Tree R) {
if(R->flag) {//已经访问过了
if(data < R->data)
return check(data, R->left);
else if(data > R->data)
return check(data, R->right);
else return false;
} else {
if(data == R->data) {
R->flag = 1;
return true;
} else return false;
}
}
bool judge(Tree R1, int N) {
int x;
bool flag = true;
if(N && R1) {
cin >> x;
if(x != R1->data) flag = false;
R1->flag = 1;
for(int i = 1; i < N; ++i) {
cin >> x;
if(flag && (!check(x,R1))) flag = false;
}
}
return flag;
}
int main() {
int N, L;
cin >> N;
while(N) {
cin >> L;
Tree R1;
R1 = Build(N);
for(int i = 0; i < L; ++i) {
if(judge(R1, N))
cout << "Yes" << endl;
else cout << "No" << endl;
Clear(R1); //清除标记
}
FreeTree(R1);
cin >> N;
}
return 0;
}
测试点
测试点如下
04-树5 Root of AVL Tree (25分)
2013年浙江大学计算机学院免试研究生上机考试真题,是关于AVL树的基本训练,一定要做
题目大意
现在给定一插入序列,输出生成的 AVL 树的根。
代码
#include <iostream>
#include <algorithm>
using namespace std;
#define maxsize 11
typedef struct AVLNode* AVLTree;
struct AVLNode {
int data;
AVLTree left,right;
int Height;
};
void FreeTree(AVLTree R) { //清空该树
if(!R) return;
FreeTree(R->left);
FreeTree(R->right);
delete R;
}
int GetHeight(AVLTree R) {
if(R)
return R->Height;
else
return 0;
}
AVLTree SingleLeftRotate(AVLTree R) { //LL单旋
AVLTree RL = R->left;
R->left = RL->right;
RL->right = R;
R->Height = max( GetHeight(R->left), GetHeight(R->right) ) + 1;
RL->Height = max( GetHeight(RL->left), R->Height) + 1;
return RL;
}
AVLTree SingleRightRotate(AVLTree R) { //RR单旋
AVLTree RR = R->right;
R->right = RR->left;
RR->left = R;
R->Height = max( GetHeight(R->left), GetHeight(R->right) ) + 1;
RR->Height = max( R->Height, GetHeight(RR->right) ) + 1;
return RR;
}
AVLTree DoubleLeftRightRotate(AVLTree R) { //LR旋转
R->left = SingleRightRotate(R->left);
return SingleLeftRotate(R);
}
AVLTree DoubleRightLeftRotate(AVLTree R) { //RL旋转
R->right = SingleLeftRotate(R->right);
return SingleRightRotate(R);
}
AVLTree NewNode(int data) {//
AVLTree R = new AVLNode;
R->data = data;
R->left = R->right = NULL;
R->Height = 0;
return R;
}
AVLTree AVL_Insert(int data, AVLTree R) {
if (!R) R = NewNode(data);
else if(data < R->data) { //插入到左子树
R->left = AVL_Insert(data, R->left);
if(GetHeight(R->left) - GetHeight(R->right) == 2) { //需要左旋
if (data < R->left->data)
R = SingleLeftRotate(R); //需要左单旋
else
R = DoubleLeftRightRotate(R);//左-右双旋
}
} else if(data > R->data) { //插入到右子树
R->right = AVL_Insert(data, R->right);
if(GetHeight(R->left) - GetHeight(R->right) == -2) { //需要右旋
if (data > R->right->data)
R = SingleRightRotate(R); //需要右单旋
else
R = DoubleRightLeftRotate(R);//右-左双旋
}
}
R->Height = max(GetHeight(R->left), GetHeight(R->right)) + 1;
return R;
}
AVLTree Build(int N) {
AVLTree R = NULL;
int x;
cin >> x;
R = NewNode(x);
for(int i = 1; i < N; ++i) {
cin >> x;
R = AVL_Insert(x, R);
}
return R;
}
int main() {
int N, L;
AVLTree R;
cin >> N;
R = Build(N);
cout << R->data << endl;
return 0;
}
测试点
测试点如下
04-树6 Complete Binary Search Tree (30分)
2013年秋季PAT甲级真题,略有难度,量力而行。第7周将给出讲解。
题目大意
现在给定一完全二叉搜索树的插入序列,输出生成的完全二叉树的层次遍历序列
思路
因为是完全二叉搜索树,由左子树结点值 > 根结点结点值 > 右子树结点值这个性质,可将给定输入序列从小到大排好序后即为该树的中序遍历序列,然后根据中序遍历的结果递归构造层次遍历序列。
中序遍历序列中,总结点数为n时,若左子树的节点数为x的,则根节点即为第x+1个元素。而如何知道左子树的结点树呢,这也是由完全二叉树的性质决定的,因为n个节点的完全二叉树,它的左子树结点数是确定的,则可以设置一个根据总结点数求左子树结点树的函数。可用到二叉树以下几个性质:
- n个结点的二叉树,其深度为log2(n) + 1
- 二叉树的第i层,最多有2i-1个结点
- 深度为k的二叉树,最多有2k-1个结点
代码
#include <iostream>
#include <cmath>
#include <algorithm>
using namespace std;
#define maxsize 2002
#define Null -1
int a[maxsize],b[maxsize];//中序遍历的结果 层次遍历的结果
int GetLeftSum(int n) { //获取左子树总结点数 n为结点总数
if(n == 1) return 0;
int h = log2(n);//除最后一层的深度
int Lsum = pow(2, h-1) - 1; //除最后一层之外的左子树结点个数
//即为(2^h-1-1)/2
int last = n - (pow(2, h) - 1); //最后一层结点数
if(last <= pow(2, h-1))
Lsum += last;
else Lsum += pow(2, h-1);
return Lsum;
}
void LevelOrderRebuild(int left, int right,int bR) {
int n = right - left + 1;//总结点数
if(n == 0) return;
int leftlen = GetLeftSum(n);
int aR = left + leftlen;
b[bR] = a[aR];
int nl = bR * 2 + 1;
int nr = nl + 1;
LevelOrderRebuild(left, aR-1, nl);
LevelOrderRebuild(aR+1, right, nr);
}
int main() {
int N;
cin >> N;
for(int i = 0; i < N; ++i)
cin >> a[i];
sort(a, a+N);
LevelOrderRebuild(0, N-1, 0);
for(int i = 0; i < N; ++i) {
if(i) {
cout << " " << b[i];
} else cout << b[i];
}
return 0;
}
测试点
测试点如下:
04-树7 二叉搜索树的操作集 (30分)
题目大意
二叉搜索树的操作集实现
代码
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ) { /* 先序遍历,由裁判实现,细节不表 */
if(BT) {
printf("%d", BT->Data);
PreorderTraversal( BT->Left);
PreorderTraversal( BT->Right);
}
}
void InorderTraversal( BinTree BT ) { /* 中序遍历,由裁判实现,细节不表 */
if(BT) {
InorderTraversal( BT->Left);
printf("%d", BT->Data);
InorderTraversal( BT->Right);
}
}
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
BinTree Insert( BinTree BST, ElementType X ) {
if(!BST) {
BST = (BinTree) malloc(sizeof(struct TNode));
BST->Data = X;
BST->Left = BST->Right = NULL;
return BST;
} else {
if(X < BST->Data)
BST->Left = Insert(BST->Left, X);
else if(X > BST->Data)
BST->Right = Insert(BST->Right, X);
}
return BST;
}
BinTree Delete( BinTree BST, ElementType X ) {
Position tmp;
if(!BST) printf("Not Found\n");
else if (X < BST->Data)
BST->Left = Delete(BST->Left, X);
else if (X > BST->Data)
BST->Right = Delete(BST->Right, X);
else { //找到了要删除的结点
if (BST->Left && BST->Right) { //待删除结点有左右两个孩子
tmp = FindMin(BST->Right); //在右子树中找最小的元素填充删除节点
BST->Data = tmp->Data;
BST->Right = Delete(BST->Right, tmp->Data);
//填充完后,在右子树中删除该最小元素
}
else { //待删除结点有1个或无子结点
tmp = BST;
if (!BST->Left) //有有孩子或无子节点
BST = BST->Right;
else if (!BST->Right)
BST = BST->Left;
free(tmp);
}
}
return BST;
}
Position Find( BinTree BST, ElementType X ) {
while (BST) {
if(X < BST->Data)
BST = BST->Left;
else if(X > BST->Data)
BST = BST->Right;
else return BST;
}
return NULL;
}
Position FindMin( BinTree BST ) {
if(BST) {
while(BST->Left)
BST = BST->Left;
}
return BST;
}
Position FindMax( BinTree BST ) {
if(BST) {
while(BST->Right)
BST = BST->Right;
}
return BST;
}
测试点
测试点如下