PTA数据结构题目集 第七周——图(中)

本文深入讲解图算法在实际问题中的应用,包括哈利·波特的考试、拯救詹姆斯邦德及旅游规划等经典问题,涵盖Floyd算法、Dijkstra算法及其变形,提供完整代码实现与测试点分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


题目集总目录
学习指路博客 图论

07-图4 哈利·波特的考试 (25分)

本题链接

是很基本的算法应用,一定要做。如果不会,那么看看小白专场,会详细介绍C语言的实现方法

题目大意

给出每两个动物之间所需魔咒长度
哈利·波特最后应该带去考场的动物要使得最难变的动物所需总魔咒长度最小。
输出哈利·波特最后应该带去考场的动物的编号、以及最长的变形魔咒的长度

思路

用Floyd算法得出最短路矩阵dist(dist[i][j]表示i到j所需最短长度,在每行里找最难变(即dist[i][j]最大)的元素,在这些元素中找最小的,输出最小值的下标i和最小值

代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn = 1005;
const int inf  = 0x3f3f3f;
int N,M,x,y,z;
bool visited[maxn];
int dist[maxn][maxn];
//用Floyd算法得到最短路矩阵
//让最难变的动物咒语长度最小
void init() {
    for(int i = 1; i <= N; ++i) {
       for(int j = 1; j <= N; ++j) {
            dist[i][j] = inf;
        } 
        dist[i][i] = 0;
    }
}
void Floyd() {
    for(int k = 1; k <= N; ++k) {
        for(int i = 1; i <= N; ++i) {
            for(int j = 1; j <= N; ++j) {
                dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
            }
        }
    }
}
void solve() {
    int num,ans,hardest;
    ans = inf+1;
    Floyd();
    for(int i = 1; i <= N; ++i) {
        hardest = 0;
        for(int j = 1; j <= N; ++j) {
            if(dist[i][j] > hardest) {
                hardest = dist[i][j];
            }
        }
        if(hardest == inf) {
            printf("0");
            return;
        }
        if(hardest < ans) {
            num = i;
            ans = hardest;
        }
    }
    printf("%d %d\n", num, ans);
}
int main(){
    scanf("%d %d", &N, &M);
    init();
    for(int i = 1; i <= M; ++i) {
        scanf("%d %d %d", &x, &y, &z);
        dist[x][y] = dist[y][x] = z;
    }
    solve();
    return 0;
}

测试点

测试点如下
在这里插入图片描述

07-图5 Saving James Bond - Hard Version (30分)

本题链接

有余力的话,好人做到底,如果上周已经尝试着救过007了,这周就继续给他建议吧;

题目大意

输出最少的跳转次数以及沿途跳转的鳄鱼的xy坐标

思路

用Floyd算法得出最短路矩阵edge(edge[i][j]表示鳄鱼i到鳄鱼j所需最少跳转次数,初始化时能跳转则置为1,不能则置为0),同时用path存储路径。
注意一点:如果有许多最短路径,只需输出具有最小第一跳转的路径

代码

// 07-图5 Saving James Bond - Hard Version (30分)
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn = 105;
const int inf = 0x3f3f3f;
int N,D;
bool vis[maxn];
int edge[maxn][maxn];
int path[maxn][maxn];
struct Point {
    int x, y;
    bool visited;
} v[maxn],s;
struct Fjump{
    int id;
    double d;
    bool operator<(const Fjump& f) {
        return d < f.d;
    }
};
vector<Fjump> fj;
void init() {
    for(int i = 0; i <= N+1; ++i) {
        for(int j = 0; j <= N+1; ++j) {
            edge[i][j] = inf;
            path[i][j] = -1;
        }
        edge[i][i] = 0;
    }
}
double countDist(Point a, Point b) {
    return sqrt(pow((a.x-b.x),2) + pow((a.y-b.y),2));
}
bool check(Point a) {
    int s = 50 - D;
    if(abs(a.x) >= s || abs(a.y) >= s) 
        return true;
    else return false;
}
void Floyd() {
    for(int k = 1; k <= N; ++k) {
        for(int i = 1; i <= N; ++i) {
            for(int j = 1; j <= N; ++j) {
                if(edge[i][k] + edge[k][j] < edge[i][j]) {
                    edge[i][j] = edge[i][k] + edge[k][j];
                    path[i][j] = k;
                }
            }
        }
    }
}
bool firstJump(int i) {
    double d = countDist(s,v[i]);
    d -= 7.5;
    return d <= D;
}
void PrintPath(int S, int E) {
    if(path[S][E] != -1) {
        int k = path[S][E];
        PrintPath(S,k);
        printf("%d %d\n", v[k].x, v[k].y);
        PrintPath(k,E);
    }
}
int main(){
    ios::sync_with_stdio(false);
    scanf("%d %d", &N, &D);
    init();
    v[0].visited = false;
    v[0].x = v[0].y = 0;
    for(int i = 1; i <= N; ++i) {
        scanf("%d %d", &v[i].x, &v[i].y);
        v[i].visited = false;
    }
    for(int i = 1; i <= N; ++i) {
        for(int j = 1; j <= N; ++j) {
            if(countDist(v[i],v[j]) <= D)
                edge[i][j] = edge[j][i] = 1;
        }
    }
    Floyd();
    int mind,temp;
    int S,E;
    mind = inf;
    for(int i = 1; i <= N; ++i) {
        if(firstJump(i)) {
            Fjump f;
            f.d = countDist(s, v[i]);
            f.id = i;
            fj.push_back(f);
        }
    }
    sort(fj.begin(), fj.end());
    for(int i = 0; i < fj.size(); ++i) {
        int sa = fj[i].id;
        if(check(v[sa])) {
                S = sa;
                E = sa;
                mind = 2;
                break;
         }
        for(int j = 1; j <= N; ++j) {
            if(sa == j) continue;
            if(check(v[j])) {
                temp = 2 + edge[sa][j];
                if (temp < mind) {
                    S = sa;
                    E = j;
                    mind = temp;
                }
            }
        }
    }
    if(D >= 42.5) { //一步上岸
        printf("1\n");
    } else if (mind != inf) {
        printf("%d\n", mind);
        if(S == E) {
            printf("%d %d\n", v[S].x, v[S].y);
        } else {
            printf("%d %d\n", v[S].x, v[S].y);
            PrintPath(S,E);
            printf("%d %d\n", v[E].x, v[E].y);
        }
    }  else 
        printf("0\n");
    return 0;
}

测试点

测试点如下
在这里插入图片描述

07-图6 旅游规划 (25分)

本题链接

Dijkstra算法的变形——姥姥只能帮你到这里了,自己动脑筋想一下怎么改造经典去解决这个问题?实在不会也不要急,再下周会讲算法的。

题目大意

给你所有村庄之间的高速公路距离及其所需花费,计算并输出给定的两村庄之间所需最小距离及其花费,若有多条最小路径则输出花费最少的。

思路

Dijkstra算法的变形,只需存边的时候同时存储距离及花费,多加一个cost数组,更新dist时的同时更新cost。

代码

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 505;
const int inf  = 0x3f3f3f;
int N,M,S,D,u,v,len,p;
struct Edge {
    int len, pay;
}e[maxn][maxn];
int dist[maxn];
int cost[maxn];
bool vis[maxn];
void init() {
    for(int i = 0; i <= N; ++i) {
        for(int j = 0; j <= N; ++j) {
            e[i][j].pay = e[i][j].len = inf;
        }
        e[i][i].pay = e[i][i].len = 0;
    }
    memset(vis, 0, sizeof(vis));
}
void Dijstra(int u) {
    for(int i = 0; i < N; ++i) {
        dist[i] = e[u][i].len;
        cost[i] = e[u][i].pay;
    }
    for(int i = 1; i <= N; ++i) {
        int t, mindis = inf;
        for(int j = 0; j < N; ++j) {
            if(!vis[j] && dist[j] <= mindis) {
                mindis = dist[j];
                t = j;
            }
        }
        vis[t] = true;
        for(int j = 0; j < N; ++j) {
            if(vis[j] || e[t][j].len == inf) continue;
            if(dist[j] > e[t][j].len + dist[t]) {
                dist[j] = e[t][j].len + dist[t];
                cost[j] = e[t][j].pay + cost[t];
            } else if(dist[j] == e[t][j].len + dist[t]) {
                if(cost[j] > e[t][j].pay + cost[t]) {
                    cost[j] = e[t][j].pay + cost[t];
                }
            }
        }
    }
}
int main(){
    scanf("%d %d %d %d", &N, &M, &S, &D);
    init();
    while(M--) {
        scanf("%d %d %d %d", &u, &v, &len, &p);
        e[u][v].len = e[v][u].len = len;
        e[u][v].pay = e[v][u].pay = p;
    }
    Dijstra(S);
    printf("%d %d\n", dist[D], cost[D]);
    return 0;
}

测试点

测试点如下
在这里插入图片描述

### 关于串(字符串)及其基本操作 #### 串的基本概念 串是一种特殊的线性表,其特点是数据元素仅由字符组成。通常情况下,串被定义为零个或多个字母组成的有限序列。 #### 串的基本操作 1. **创建串** 创建一个新的空串或者根据给定的内容初始化一个新串。 2. **获取长度 (StrLength)** 返回串的实际长度,即其中所含字符的数量[^1]。 3. **取子串 (SubString)** 给定起始位置和长度参数,在原串中截取出相应部分形成新的子串。 4. **连接两个串 (Concatenate)** 将两个已有的串按顺序拼接在一起成为一个更大的串。 5. **比较两串是否相等 (Compare)** 判断两个串之间是否存在完全相同的情况,返回布尔值表示结果。 6. **查找模式匹配的位置 (Index)** 寻找某个特定模式第一次出现在目标串中的确切位置,并给出索引号;如果不存在则返回特殊标记如-1。 7. **替换指定内容 (Replace)** 把源串内所有符合条件的部分替换成其他预设好的片段。 8. **清空串 (ClearString)** 移除当前对象里所有的字符使其变回初始状态——空串形式。 9. **销毁串 (DestroyString)** 彻底释放分配给此实例的空间资源并解除关联指针指向关系以便后续重用这些内存区域。 ```cpp // C++实现示例:获取串的长度 int StrLength(const string& str){ return static_cast<int>(str.size()); } ``` --- ### 顺序串的操作特点 对于顺序存储方式下的串而言,由于采用了数组作为底层容器保存各个字符单元,因此能够支持随机访问任意下标的成员变量而无需遍历整个结构体内部节点链路。这使得某些涉及频繁读写固定偏移量处的数据项变得极为高效快捷。然而另一方面也意味着当执行插入删除动作时可能会引发大量位移调整工作从而影响整体性能表现。 ```cpp // C++实现示例:顺序串的取子串函数 string SubString(const string& S, int pos, int len){ if(pos < 0 || pos >= S.length() || len < 0 || len > S.length()-pos) throw out_of_range("Invalid position or length"); return S.substr(pos, len); } ``` --- ### 结合PTA平台上的算法与数据结构课程学习建议 在张庆老师的《算法与数据结构》教材及相关在线练习平台上,学生可以通过实践编程题目加深理解上述理论知识点的应用场景和技术细节。特别是针对串处理方面的问题设计,往往涉及到灵活运用多种基础功能组合解决问题的能力培养上。通过不断尝试解决不同难度级别的习题锦,可以有效提升个人程序开发水平以及逻辑思维能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余cos

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值