题目描述
如题,已知一个数列,你需要进行下面三种操作:
将某区间每一个数乘上 xx
将某区间每一个数加上 xx
求出某区间每一个数的和
输入格式
第一行包含三个整数 n,m,pn,m,p,分别表示该数列数字的个数、操作的总个数和模数。
第二行包含 nn 个用空格分隔的整数,其中第 ii 个数字表示数列第 ii 项的初始值。
接下来 mm 行每行包含若干个整数,表示一个操作,具体如下:
操作 11: 格式:1 x y k 含义:将区间 [x,y][x,y] 内每个数乘上 kk
操作 22: 格式:2 x y k 含义:将区间 [x,y][x,y] 内每个数加上 kk
操作 33: 格式:3 x y 含义:输出区间 [x,y][x,y] 内每个数的和对 pp 取模所得的结果
输出格式
输出包含若干行整数,即为所有操作 33 的结果。
输入输出样例
输入 #1复制
5 5 38
1 5 4 2 3
2 1 4 1
3 2 5
1 2 4 2
2 3 5 5
3 1 4
输出 #1复制
17
2
说明/提示
【数据范围】
对于 30%30% 的数据:n \le 8n≤8,m \le 10m≤10
对于 70%70% 的数据:n \le 10^3n≤10
3
,m \le 10^4m≤10
4
对于 100%100% 的数据:n \le 10^5n≤10
5
,m \le 10^5m≤10
5
除样例外,p = 571373p=571373
(数据已经过加强_)
样例说明:
故输出应为 1717、22( 40 \bmod 38 = 240mod38=2 )
乘法板子与加法、替换等不同,是对于懒标记进行先乘后加的操作,主要对懒标记和树上节点的更新
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <map>
#include <stack>
#include <set>
#include <queue>
#include <vector>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <cstdio>
#define inf 0x3f3f3f3f
#define cha 1e-6
#define ll long long
using namespace std;
const int maxn = 1e5 + 6;
ll node[400005],lazy[400005],mul[400005];
ll a[100005];
ll mod;
ll read() {
ll w = 1, q = 0;
char ch = ' ';
while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
if (ch == '-') w = -1, ch = getchar();
while (ch >= '0' && ch <= '9') q = (ll)q * 10 + ch - '0', ch = getchar();
return (ll)w * q;
}
int n, m;
void up(ll i) { node[i] = (node[(i << 1)] + node[(i << 1) | 1]) % mod; }
void pd(ll i, ll s, ll t) {
ll l = (i << 1), r = (i << 1) | 1, mid = (s + t) >> 1;
if (mul[i] != 1) {
mul[l] *= mul[i];mul[l] %= mod;
mul[r] *= mul[i];mul[r] %= mod;
lazy[l] *= mul[i];lazy[l] %= mod;
lazy[r] *= mul[i];lazy[r] %= mod;
node[l] *= mul[i];node[l] %= mod;
node[r] *= mul[i];node[r] %= mod;
mul[i] = 1;
}
if (lazy[i]) {
node[l] += lazy[i] * (mid - s + 1);node[l] %= mod;
node[r] += lazy[i] * (t - mid);node[r] %= mod;
lazy[l] += lazy[i];lazy[l] %= mod;
lazy[r] += lazy[i];lazy[r] %= mod;
lazy[i] = 0;
}
return;
}
void build(ll s, ll t, ll i) {
mul[i] = 1;
if (s == t) {
node[i] = a[s];
return;
}
ll mid = (s + t) >> 1;
build(s, mid, i << 1);
build(mid + 1, t, (i << 1) | 1);
up(i);
}
inline void updatemul(ll l, ll r, ll s, ll t, ll p, ll z) {
ll mid = (s + t) >> 1;
if (l <= s && t <= r) {
mul[p] *= z;mul[p] %= mod;
lazy[p] *= z;lazy[p] %= mod;
node[p] *= z;node[p] %= mod;
return;
}
pd(p, s, t);
if (mid >= l) updatemul(l, r, s, mid, (p << 1), z);
if (mid + 1 <= r) updatemul(l, r, mid + 1, t, (p << 1) | 1, z);
up(p);
}
inline void updateplus(ll l, ll r, ll s, ll t, ll p, ll z) {
ll mid = (s + t) >> 1;
if (l <= s && t <= r) {
node[p] += z * (t - s + 1);node[p] %= mod;
lazy[p] += z;lazy[p] %= mod;
return;
}
pd(p, s, t);
if (mid >= l) updateplus(l, r, s, mid, (p << 1), z);
if (mid + 1 <= r) updateplus(l, r, mid + 1, t, (p << 1) | 1, z);
up(p);
}
inline ll getsum(ll l, ll r, ll s, ll t, ll p) {
ll mid = (s + t) >> 1;
ll sum = 0;
if (l <= s && t <= r) return node[p];
pd(p, s, t);
if (mid >= l) sum += getsum(l, r, s, mid, (p << 1));
sum %= mod;
if (mid + 1 <= r) sum += getsum(l, r, mid + 1, t, (p << 1) | 1);
return sum % mod;
}
int main() {
ll i, j, x, y, bh;
ll z;
n = read();
m = read();
mod = read();
for (i = 1; i <= n; i++) a[i] = read();
build(1, n, 1);
for (i = 1; i <= m; i++) {
bh = read();
if (bh == 1) {
x = read();
y = read();
z = read();
updatemul(x, y, 1, n, 1, z);
} else if (bh == 2) {
x = read();
y = read();
z = read();
updateplus(x, y, 1, n, 1, z);
} else if (bh == 3) {
x = read();
y = read();
printf("%lld\n", getsum(x, y, 1, n, 1));
}
}
system("pause");
return 0;
}