Codeforces Round #684 (Div. 2) C1. Binary Table (Easy Version) 模拟

这是一道关于二进制表格操作的问题。你需要通过选择3个不同单元格所在的2×2子矩阵进行符号翻转,目标是使所有单元格都变成0。允许最多进行3nm次操作,且总操作数不超过所有测试用例的20000次。给出每个测试用例的表格大小和初始状态,你需要输出实现目标所需的最小操作数及其具体操作步骤。
摘要由CSDN通过智能技术生成

This is the easy version of the problem. The difference between the versions is in the number of possible operations that can be made. You can make hacks if and only if you solved both versions of the problem.

You are given a binary table of size n×m. This table consists of symbols 0 and 1.

You can make such operation: select 3 different cells that belong to one 2×2 square and change the symbols in these cells (change 0 to 1 and 1 to 0).

Your task is to make all symbols in the table equal to 0. You are allowed to make at most 3nm operations. You don’t need to minimize the number of operations.

It can be proved that it is always possible.

Input
The first line contains a single integer t (1≤t≤5000) — the number of test cases. The next lines contain descriptions of test cases.

The first line of the description of each test case contains two integers n, m (2≤n,m≤100).

Each of the next n lines contains a binary string of length m, describing the symbols of the next row of the table.

It is guaranteed that the sum of nm for all test cases does not exceed 20000.

Output
For each test case print the integer k (0≤k≤3nm) — the number of operations.

In the each of the next k lines print 6 integers x1,y1,x2,y2,x3,y3 (1≤x1,x2,x3≤n,1≤y1,y2,y3≤m) describing the next operation. This operation will be made with three cells (x1,y1), (x2,y2), (x3,y3). These three cells should be different. These three cells should belong into some 2×2 square.

Example
inputCopy
5
2 2
10
11
3 3
011
101
110
4 4
1111
0110
0110
1111
5 5
01011
11001
00010
11011
10000
2 3
011
101
outputCopy
1
1 1 2 1 2 2
2
2 1 3 1 3 2
1 2 1 3 2 3
4
1 1 1 2 2 2
1 3 1 4 2 3
3 2 4 1 4 2
3 3 4 3 4 4
4
1 2 2 1 2 2
1 4 1 5 2 5
4 1 4 2 5 1
4 4 4 5 3 4
2
1 3 2 2 2 3
1 2 2 1 2 2
Note
In the first test case, it is possible to make only one operation with cells (1,1), (2,1), (2,2). After that, all symbols will be equal to 0.

In the second test case:

operation with cells (2,1), (3,1), (3,2). After it the table will be:

011
001
000
operation with cells (1,2), (1,3), (2,3). After it the table will be:

000
000
000
In the fifth test case:

operation with cells (1,3), (2,2), (2,3). After it the table will be:

010
110
operation with cells (1,2), (2,1), (2,2). After it the table will be:

000
000
同学写的带模拟。。。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <queue>
#include <functional>
#include <vector>
#include <stack>
#include <set>
#define int long long
using namespace std;
typedef long long ll;
const int maxn=2e5+50;
const int inf=0x3f3f3f3f;
const int MOD=1e9+7;
const int HASH=131;

int mp[200][200];
vector<int> ans[maxn];

signed main()
{
    int t;
    cin>>t;
    while(t--)
    {
        for(int i=1;i<maxn;i++)
            ans[i].clear();
        int cnt=0;
        int n,m;
        cin>>n>>m;
        string s[107];
        for(int i=1;i<=n;i++)
            cin>>s[i];
        for(int i=1;i<=n;i++)
        {
            for(int j=0;j<m;j++)
            {
                mp[i][j+1]=s[i][j]-'0';
            }
        }
        for(int i=1;i<=n;i++)
        {
            if(i!=n)
            {
                for(int j=1;j<=m;j++)
                {
                    if(j!=m)
                    {
                        if(mp[i][j]!=0)
                        {
                            mp[i][j]^=1;
                            mp[i+1][j]^=1;
                            mp[i+1][j+1]^=1;
                            ans[++cnt].push_back(i);

                            ans[cnt].push_back(j);

                            ans[cnt].push_back(i+1);

                            ans[cnt].push_back(j);

                            ans[cnt].push_back(i+1);

                            ans[cnt].push_back(j+1);

                        }
                    }
                    else
                    {
                        if(mp[i][j]!=0)
                        {
                            mp[i][j]^=1;
                            mp[i+1][j]^=1;
                            mp[i+1][j-1]^=1;
                            ans[++cnt].push_back(i);
                            ans[cnt].push_back(j);
                            ans[cnt].push_back(i+1);
                            ans[cnt].push_back(j);
                            ans[cnt].push_back(i+1);
                            ans[cnt].push_back(j-1);
                        }
                    }
                }
            }
            else
            {
                for(int j=1;j<=m;j++)
                {
                    if(j!=m)
                    {
                        if(mp[i][j]!=0)
                        {
                            mp[i][j]^=1;
                            ans[++cnt].push_back(i);
                            ans[cnt].push_back(j);
                            ans[cnt].push_back(i-1);
                            ans[cnt].push_back(j);
                            ans[cnt].push_back(i-1);
                            ans[cnt].push_back(j+1);
                            mp[i][j+1]^=1;
                            ans[++cnt].push_back(i);
                            ans[cnt].push_back(j+1);
                            ans[cnt].push_back(i-1);
                            ans[cnt].push_back(j);
                            ans[cnt].push_back(i-1);
                            ans[cnt].push_back(j+1);
                        }
                    }

                    else
                    {
                        if(mp[i][j]!=0)
                        {
                            ans[++cnt].push_back(i);
                            ans[cnt].push_back(j);
                            ans[cnt].push_back(i);
                            ans[cnt].push_back(j-1);
                            ans[cnt].push_back(i-1);
                            ans[cnt].push_back(j);

                            ans[++cnt].push_back(i);
                            ans[cnt].push_back(j);
                            ans[cnt].push_back(i-1);
                            ans[cnt].push_back(j-1);
                            ans[cnt].push_back(i-1);
                            ans[cnt].push_back(j);

                            ans[++cnt].push_back(i);
                            ans[cnt].push_back(j);
                            ans[cnt].push_back(i-1);
                            ans[cnt].push_back(j-1);
                            ans[cnt].push_back(i);
                            ans[cnt].push_back(j-1);
                            mp[i][j]^=1;
                        }
                    }
                }
            }
        }
        cout<<cnt<<endl;
        for(int i=1;i<=cnt;i++)
        {
            cout<<ans[i][0]<<' '<<ans[i][1]<<' '<<ans[i][2]<<' '<<ans[i][3]<<' '<<ans[i][4]<<' '<<ans[i][5]<<endl;
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值