Codeforces Round #690 (Div. 3) E2. Close Tuples (hard version) 卢卡斯组合数逆元

这是一个关于编程竞赛中的数学问题,要求找出长度为n的序列a中,元素差值不超过k的m个元素子集的数量。题目提供了一个包含t个测试用例的数据集,每个用例包括n、m和k的值,以及序列a的元素。输出每个测试用例的答案,即符合条件的子集数量模109+7。解决方案涉及到数组排序、组合数学和卢卡斯定理的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

outputstandard output
This is the hard version of this problem. The only difference between the easy and hard versions is the constraints on k and m. In this version of the problem, you need to output the answer by modulo 109+7.

You are given a sequence a of length n consisting of integers from 1 to n. The sequence may contain duplicates (i.e. some elements can be equal).

Find the number of tuples of m elements such that the maximum number in the tuple differs from the minimum by no more than k. Formally, you need to find the number of tuples of m indices i1<i2<…<im, such that

max(ai1,ai2,…,aim)−min(ai1,ai2,…,aim)≤k.
For example, if n=4, m=3, k=2, a=[1,2,4,3], then there are two such triples (i=1,j=2,z=4 and i=2,j=3,z=4). If n=4, m=2, k=1, a=[1,1,1,1], then all six possible pairs are suitable.

As the result can be very large, you should print the value modulo 109+7 (the remainder when divided by 109+7).

Input
The first line contains a single integer t (1≤t≤2⋅105) — the number of test cases. Then t test cases follow.

The first line of each test case contains three integers n, m, k (1≤n≤2⋅105, 1≤m≤100, 1≤k≤n) — the length of the sequence a, number of elements in the tuples and the maximum difference of elements in the tuple.

The next line contains n integers a1,a2,…,an (1≤ai≤n) — the sequence a.

It is guaranteed that the sum of n for all test cases does not exceed 2⋅105.

Output
Output t answers to the given test cases. Each answer is the required number of tuples of m elements modulo 109+7, such that the maximum value in the tuple differs from the minimum by no more than k.

Example
inputCopy
4
4 3 2
1 2 4 3
4 2 1
1 1 1 1
1 1 1
1
10 4 3
5 6 1 3 2 9 8 1 2 4
outputCopy
2
6
1
20i
芜湖,过了!!
和easy一样先把数组进行排序,再就是从m开始遍历到n每次找大于a[i]-k的最小值的位置,这样我就知道了这两个相差小于k的数字位置,我每次先拿a[i]再从a[i]-k的位置到a[i]中任取两个,这样就转换成了一道组合数取模的问题。
再贴上一个卢卡斯定理求组合数逆元的板子,直接起飞.=v=.

#include<iostream>
#include<string>
#include<map>
#include<algorithm>
#include<memory.h>
#include<cmath>
#include<assert.h>
using namespace std;
typedef long long ll;
const int maxn=3e5+5;
const int inf=0x3f3f3f3f;
const int mod=1e9+7;
ll a[maxn];
int maxx(int a,int b,int c){
	return max(a,max(b,c));
}
int minn(int a,int b,int c){
	return min(a,min(b,c));
}
ll f[maxn]; 
ll qpow(ll a,ll b){
	ll ans = 1,base = a;
	while(b){
		if(b&1) ans = ans * base % mod;
		base = base * base % mod;
		b>>=1; 
	}
	return ans;
}
void init(){
	f[0]=1;
	for(int i=1;i<=2e5;i++){
		f[i]=f[i-1]*i%mod;
	} 
}
ll cal(ll n,ll m){
	if(n<m) return 0; 
 	return 1ll*f[n]*qpow(f[m],mod-2)%mod*qpow(f[n-m],mod-2)%mod;
}
void solve(){
	ll t;
    cin>>t;
	init();
    while(t--)
    {
		ll n,m,k;
		cin>>n>>m>>k;
		for(ll i=1;i<=n;i++){
			cin>>a[i];
		}
		sort(a+1,a+1+n);
		int cnt=0;
		ll sum=0;
		for(ll i=m;i<=n;i++){
			int x=lower_bound(a+1,a+1+n,a[i]-k)-a;
			sum+=cal(i-x,m-1);
			sum=sum%mod;
		}
		cout<<sum%mod<<endl;
    }
}
int main()
{
	ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
	solve();
	return 0;
}
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值