【补充】LeetCode 实现一个哈希表

LeetCode 101 中的内容

补充-哈希表

哈希表又称散列表,使用O(n)空间复杂度存储数据,通过哈希函数映射位置从而实现近似O(1)时间复杂度的插入、查找、删除等操作。

C++中要查找元素是否在集合中可以使用unordered_set

如需同时存储键和值,则需要用unordered_map

如果元素有穷,并且范围不大,那么可以用一个固定大小的数组来存储或统计元素。

如果需要维持大小关系,且插入查找并不过于频繁,则可以使用有序的 setmap 来替代 unordered_setunordered_map

实现一个简单的哈希表:

template<typname T> 
class HashTable {
private:
	vector<list<T>> hash_table;
    // 哈希函数
    int myhash(const T& value) const {
        return hash(value, hash_table.size());
    }
public:
    // 构造与析构
    // size是最好的质数
    HashTable(int size = 31) {
        hash_table.reserve(size);
        hash_table.resize(size);
    }
    
    ~HashTable() { }
    
    // 查找哈希表是否存在该值
    bool contains(const T& value) {
        int hash_value = myhash(value);
        const list<T>& slot = hash_table[hash_value];
        
        std::list<T>::const_iterator it = slot.cbegin();
        for (; it != slot.cend() && *it != value; ++it);
        
        return it != slot.cend();
    }
    
    // 插入值
    bool insert(const T& value) {
        if (contains(value)) {
            return false;
        }
        int hash_value = myhash(value);
        std::list<T>& slot = hash_table[hash_value];
        slot.push_front(value);
        
        return true;
    }
    
    // 删除值
    bool remove(const T& value) {
        list<T>& slot = hash_table[myhash(value)];
        auto it = find(slot.begin(), slot.end(), value);
        if (it == slot.end) {
            return false;
        }
        slot.erase(it);
        
        return true;
    }
};

// 一个简单的对整数实现的哈希函数
int hash(const int& key, const int& tableSize) {
    return key % tableSize;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ClimberCoding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值