LeetCode 070、爬楼梯

LeetCode 070、爬楼梯

题目

image-20211110135902931

题解

先分析题目,爬到第一层有一种方法,爬到第二层有两种方法。爬到第三层时,可以选择爬一层再跨两步,也可以选择爬两层再跨一步就到。

即到达第三层是由第一层和第二层楼梯状态所推导出来的——> 动态规划

分析一下动态规划五部曲:

  1. 确定dp数组以及下标的含义

    dp[i]:爬到第i层楼梯,有dp[i] 种方法

  2. 确定递推公式

    dp[i] = dp[i - 1] + dp[i - 2] ,在推导dp[i] 时一定要时刻想着dp[i] 的定义,否则容易跑偏。

  3. dp数组如何初始化

    本题中没有必要去讨论dp[0] 的初始化,我们肯定的是dp[1] = 1,dp[2] = 2,直接从 i = 3 开始递推。

  4. 确定遍历顺序

    从递推公式中就可以看出,遍历顺序一定是从前向后便利的

  5. 举例推导dp数组

    当 n = 5 时,dp[i] 从 i = 1开始分别为:1 2 3 5 8

class Solution {
public:
    int climbStairs(int n) {
        if (n <= 2) return n;

        vector<int> dp(n + 1);
        dp[1] = 1; 
        dp[2] = 2;
        for (int i = 3; i <= n; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

优化一下空间复杂度,代码如下:

class Solution {
public:
    int climbStairs(int n) {
        if (n <= 2) return n;

        int dp[3];  // dp[0]存储爬到第i层楼梯时的方法总数
        dp[1] = 1;  // dp[1]存储爬到第i - 2层楼梯时的方法总数
        dp[2] = 2;  // dp[2]存储爬到第i - 1层楼梯时的方法总数
        for (int i = 3; i <= n; i++) {
            dp[0] = dp[1] + dp[2];
            dp[1] = dp[2];
            dp[2] = dp[0];
        }
        return dp[0];
    }
};
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ClimberCoding

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值