LeetCode 070、爬楼梯
题目
题解
先分析题目,爬到第一层有一种方法,爬到第二层有两种方法。爬到第三层时,可以选择爬一层再跨两步,也可以选择爬两层再跨一步就到。
即到达第三层是由第一层和第二层楼梯状态所推导出来的——> 动态规划
分析一下动态规划五部曲:
-
确定dp数组以及下标的含义
dp[i]:爬到第i层楼梯,有dp[i] 种方法
-
确定递推公式
dp[i] = dp[i - 1] + dp[i - 2] ,在推导dp[i] 时一定要时刻想着dp[i] 的定义,否则容易跑偏。
-
dp数组如何初始化
本题中没有必要去讨论dp[0] 的初始化,我们肯定的是dp[1] = 1,dp[2] = 2,直接从 i = 3 开始递推。
-
确定遍历顺序
从递推公式中就可以看出,遍历顺序一定是从前向后便利的
-
举例推导dp数组
当 n = 5 时,dp[i] 从 i = 1开始分别为:1 2 3 5 8
class Solution {
public:
int climbStairs(int n) {
if (n <= 2) return n;
vector<int> dp(n + 1);
dp[1] = 1;
dp[2] = 2;
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(n)
优化一下空间复杂度,代码如下:
class Solution {
public:
int climbStairs(int n) {
if (n <= 2) return n;
int dp[3]; // dp[0]存储爬到第i层楼梯时的方法总数
dp[1] = 1; // dp[1]存储爬到第i - 2层楼梯时的方法总数
dp[2] = 2; // dp[2]存储爬到第i - 1层楼梯时的方法总数
for (int i = 3; i <= n; i++) {
dp[0] = dp[1] + dp[2];
dp[1] = dp[2];
dp[2] = dp[0];
}
return dp[0];
}
};
- 时间复杂度:O(n)
- 空间复杂度:O(1)