“数独”是当下炙手可热的智力游戏。一般认为它的起源是“拉丁方块”,是大数学家欧拉于1783年发明的。
如图[1.jpg]所示:6x6的小格被分为6个部分(图中用不同的颜色区分),每个部分含有6个小格(以下也称为分组)。
开始的时候,某些小格中已经填写了字母(ABCDEF之一)。需要在所有剩下的小格中补填字母。
全部填好后,必须满足如下约束:
1. 所填字母只允许是A,B,C,D,E,F 中的某一个。
2. 每行的6个小格中,所填写的字母不能重复。
3. 每列的6个小格中,所填写的字母不能重复。
4. 每个分组(参见图中不同颜色表示)包含的6个小格中,所填写的字母不能重复。
为了表示上的方便,我们用下面的6阶方阵来表示图[1.jpg]对应的分组情况(组号为0~5):
0,0,0,0,1,1,0,2,2,0,1,3,2,2,1,1,1,3,2,4,3,3,3,3,2,4,4,4,5,5,4,4,5,5,5,5
用下面的数据表示其已有字母的填写情况:
02C
03B
05A
20D
35E
53F
很明显,第一列表示行号,第二列表示列号,第三列表示填写的字母。行号、列号都从0开始计算。
一种可行的填写方案(此题刚好答案唯一)为:
E F C B D A
A C E D F B
D A B E C F
F B D C A E
B D F A E C
C E A F B D
你的任务是:编写程序,对一般的拉丁方块问题求解,如果多解,要求找到所有解。
【输入、输出格式要求】
用户首先输入6行数据,表示拉丁方块的分组情况。
接着用户输入一个整数n (n<36), 表示接下来的数据行数
接着输入n行数据,每行表示一个预先填写的字母。
程序则输出所有可能的解(各个解间的顺序不重要)。
每个解占用7行。
即,先输出一个整数,表示该解的序号(从1开始),接着输出一个6x6的字母方阵,表示该解。
解的字母之间用空格分开。
如果找不到任何满足条件的解,则输出“无解”
例如:用户输入:
000011
022013
221113
243333
244455
445555
6
02C
03B
05A
20D
35E
53F
则程序输出:
1
E F C B D A
A C E D F B
D A B E C F
F B D C A E
B D F A E C
C E A F B D
自己犯的错误:
- 以为是上下左右四个方向dfs,实际上按行dfs即可。
- 这个题dfs需要注意的东西很多,自己钻起头顾不着腚。
- 希望自己对没有十足把握的东西多多努力。
12年蓝桥杯决赛最后一题 十周年
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100;
int n,res = 0;
char zu[N][N];
char a[N][N];
bool check(int r,int c,char s)
{
for(int i=0;i<6;i++)
{
if(a[r][i] == s) return false;
if(a[i][c] == s) return false;
}
for(int i=0;i<6;i++)
{
for(int j=0;j<6;j++)
if(zu[i][j] == zu[r][c] && s == a[i][j])
return false;
}
return true;
}
void dfs(int r,int c)
{
if(r==6&&c==0)
{
res++;
printf("%d\n",res);
for(int i=0;i<6;i++)
{
for(int j=0;j<6;j++)
cout<<a[i][j]<<" ";
puts("");
}
return;
}
if(a[r][c] == '\0')
{
for(char s = 'A';s<='F';s++)
if(check(r,c,s))
{
a[r][c] = s;
if(c+1>=6) dfs(r+1,0);
else dfs(r,c+1);
a[r][c] = '\0';
}
}
else
{
if(c+1>=6) dfs(r+1,0);
else dfs(r,c+1);
}
}
int main()
{
for(int i=0;i<6;i++)
for(int j=0;j<6;j++)
{
cin>>zu[i][j];
}
cin>>n;
for(int i=1;i<=n;i++)
{
int r,c;
string s;
cin>>s;
r = s[0] - '0';
c = s[1] - '0';
a[r][c] = s[2];
}
dfs(0,0);
// printf("res = %d\n",res);
}