拉丁数独填数

本文介绍了一种使用深度优先搜索(DFS)解决6x6拉丁方块填充问题的方法。该问题源于欧拉发明的拉丁方块,要求在6x6的网格中填入不重复的字母,遵循行、列和特定区域的限制。题目提供了一段错误的DFS实现,并给出了正确的解决方案。程序接收用户输入的分组和已填字母,然后输出所有可能的解。当无解时,程序会输出'无解'。这是一个典型的回溯算法应用,用于解决组合优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

“数独”是当下炙手可热的智力游戏。一般认为它的起源是“拉丁方块”,是大数学家欧拉于1783年发明的。

如图[1.jpg]所示:6x6的小格被分为6个部分(图中用不同的颜色区分),每个部分含有6个小格(以下也称为分组)。

开始的时候,某些小格中已经填写了字母(ABCDEF之一)。需要在所有剩下的小格中补填字母。

全部填好后,必须满足如下约束:

1. 所填字母只允许是A,B,C,D,E,F 中的某一个。

2. 每行的6个小格中,所填写的字母不能重复。

3. 每列的6个小格中,所填写的字母不能重复。

4. 每个分组(参见图中不同颜色表示)包含的6个小格中,所填写的字母不能重复。

为了表示上的方便,我们用下面的6阶方阵来表示图[1.jpg]对应的分组情况(组号为0~5):
0,0,0,0,1,1,0,2,2,0,1,3,2,2,1,1,1,3,2,4,3,3,3,3,2,4,4,4,5,5,4,4,5,5,5,5

用下面的数据表示其已有字母的填写情况:
02C
03B
05A
20D
35E
53F

很明显,第一列表示行号,第二列表示列号,第三列表示填写的字母。行号、列号都从0开始计算。

一种可行的填写方案(此题刚好答案唯一)为:

E F C B D A
A C E D F B
D A B E C F
F B D C A E
B D F A E C
C E A F B D

你的任务是:编写程序,对一般的拉丁方块问题求解,如果多解,要求找到所有解。

【输入、输出格式要求】

用户首先输入6行数据,表示拉丁方块的分组情况。

接着用户输入一个整数n (n<36), 表示接下来的数据行数

接着输入n行数据,每行表示一个预先填写的字母。

程序则输出所有可能的解(各个解间的顺序不重要)。

每个解占用7行。

即,先输出一个整数,表示该解的序号(从1开始),接着输出一个6x6的字母方阵,表示该解。

解的字母之间用空格分开。

如果找不到任何满足条件的解,则输出“无解”

例如:用户输入:
000011
022013
221113
243333
244455
445555
6
02C
03B
05A
20D
35E
53F

则程序输出:
1
E F C B D A
A C E D F B
D A B E C F
F B D C A E
B D F A E C
C E A F B D


自己犯的错误:

  1. 以为是上下左右四个方向dfs,实际上按行dfs即可。
  2. 这个题dfs需要注意的东西很多,自己钻起头顾不着腚。
  3. 希望自己对没有十足把握的东西多多努力。

12年蓝桥杯决赛最后一题 十周年

#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 100;
int n,res = 0;
char zu[N][N];
char a[N][N];
bool check(int r,int c,char s)
{
    for(int i=0;i<6;i++)
    {
        if(a[r][i] == s) return false;
        if(a[i][c] == s) return false;
    }
    for(int i=0;i<6;i++)
    {
        for(int j=0;j<6;j++)
            if(zu[i][j] == zu[r][c] && s == a[i][j])
                return false;
    }
    return true;
}
void dfs(int r,int c)
{

    if(r==6&&c==0)
    {
        res++;
        printf("%d\n",res);
        for(int i=0;i<6;i++)
        {
            for(int j=0;j<6;j++)
               	cout<<a[i][j]<<" ";
            puts("");
        }
        return;
    }
    if(a[r][c] == '\0')
    {
    	    for(char s = 'A';s<='F';s++)
            if(check(r,c,s))
            {
        	    a[r][c] = s;
			    if(c+1>=6) dfs(r+1,0);
			    else dfs(r,c+1);
                a[r][c] = '\0';
			}
	}
	else
	{
	    if(c+1>=6) dfs(r+1,0);
	    else dfs(r,c+1);
	 } 
}
int main()
{
    for(int i=0;i<6;i++)
        for(int j=0;j<6;j++)
        {
            cin>>zu[i][j];
        }
    cin>>n;
    for(int i=1;i<=n;i++)
    {
        int r,c;
        string s;
        cin>>s;
        r = s[0] - '0';
        c = s[1] - '0'; 
        a[r][c] = s[2];
    }
    dfs(0,0);
  //  printf("res = %d\n",res);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值