Manacher算法

题目地址

AcWing:3188. manacher算法

说明及示意图

1.在枚举点i的时候,因为i在以mid为中心的最长回文串中,所以点i和点j关于mid对称,p[i] = p[j],因为 (i + j) / 2 == mid,所以j = 2 * mid - i, 即p[i] = p[mid * 2 - i];
2.如果以点j为中心的最长回文串的左边超出以mid为中心的最长回文串的左边,则p[i] = mr - i;
3.综上所述,p[i] = min(p[mid * 2 - i], mr - i).

在这里插入图片描述
在这里插入图片描述

代码

#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

const int N = 2e7 + 10;

int n;
char a[N], b[N]; // a是原串,b是初始化后的新串
int p[N]; //以b[i]为中心的最长回文半径 

void init()
{
    int k = 0;
    b[k++] = '$', b[k++] = '#';
    for (int i = 0; i < n; i++)
    {
        b[k++] = a[i];
        b[k++] = '#';
    }
    b[k++] = '^';
    n = k;
}

void manacher()
{
    int mr = 0, mid; // mr(mid_right)是以mid为中心的最大回文串的右边界
    for (int i = 1; i < n; i++)
    {
        if (i < mr) p[i] = min(p[mid * 2 - i], mr - i);
        else p[i] = 1;
        while (b[i - p[i]] == b[i + p[i]]) p[i]++; // 向两边扩展
        if (i + p[i] > mr) // 以i为中心的最长回文串的右边界大于以mid为中心的右边界
        {
            mr = i + p[i]; // 更新最大回文串的右边界
            mid = i; // 更新最大回文串的中心点
        }
    }
}

int main()
{
    scanf("%s", a);
    n = strlen(a);
    
    init();
    manacher();
    
    int res = 0;
    for (int i = 0; i < n; i++) res = max(res, p[i]);
    printf("%d\n", res - 1);
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值