年度征文 | 回顾2022,展望2023(我难忘的2022,我憧憬的2023)

一名在校大学生分享了他在2022年的前端学习成果、获得的荣誉、求职经历以及对2023年的技术深化、生活目标和态度。他参加了蓝桥杯、获得了华为云认证,并成为CSDN的优质创作者。在求职过程中,他认识到提升技术广度和深度的重要性。2023年,他的计划包括深化前端技术、学习服务端语言和计算机基础知识。

个人简介

👀个人主页: 前端杂货铺
🙋‍♂️学习方向: 主攻前端方向,也会涉及到服务端
📃个人状态: 在校大学生一枚,已拿多个前端 offer(秋招)
🚀未来打算: 为中国的工业软件事业效力n年
🥇推荐学习:🍍前端面试宝典 🍉Vue2 🍋Vue3 🍓Vue2&Vue3项目实战 🥝Node.js 🥭Git🍒Three.js
🌕个人推广:每篇文章最下方都有加入方式,旨在交流学习&资源分享,快加入进来吧


一、前言

2022 已和我们再见,2023 正向我们走来。

在这里,首先祝大家在新的一年平安喜乐,好运连连,用不宕机,offer 拿到手软,升职加薪!!

曾子曰:“吾日三省吾身”,新的一年的到来意味着旧的一年的结束,我们也应该做个总结,再立个新年 Flag 了。

虽说我们对未来的憧憬不一定能达到,但我们奔着这个方向去努力,我想结果总不会太差的…

在这里插入图片描述


二、回顾 2022

2022 年,经历了很多,这一年注定不平凡…

1、技术成长

我的前端学习之旅

这一年的成长应该是这四年大学时光中最多的一年。

这一年通过 b 站,慕课等平台学习了很多前端的知识 (ES6、AJAX、jQuery、Flex布局、Less预处理、Vue2、Vue3、Node.js、Three.js、项目实战…)

这一年的技术栈学的还是挺多的,不枉我泡了那么多天的图书馆了(哈哈哈~)

目前涉猎的技术 广而不精(虽然也不是很广…),只是对这些技术栈有了个 初步的认识,未来的一年还是 要多挖深度!

前端技术 不仅杂乱,而且技术 更新迭代很快,所以我们一定要在学习和工作的过程中 持续保持着虚心学习的态度,这样才不会被时代所抛弃。

在这里插入图片描述


2、荣誉证书

这一年在学习前端技术的同时,还参加了一些 比赛和活动(真后悔前两年啥也没参加…)。

在这里,真的 强烈建议 大一大二大三的学弟学妹们 多参加一些技术类的比赛和活动(你一定会从中有所收获的)

要记住你的 每一次参赛或活动经历都是对自己的磨练,并会在将来的某个时间点派上用场的(比如说对面试有很大的帮助等)

接下来,浅浅说一下这一年的小成就(大家也可以参考着参加参加)

第十三届蓝桥杯-WEB应用开发-山东省二等奖

在这里插入图片描述


华为云高斯数据库认证

在这里插入图片描述


CSDN 原创征文第二季&第四季入围奖(400块到手~)

在这里插入图片描述

在这里插入图片描述

CSDN 前端领域优质创作者

在这里插入图片描述

在这里插入图片描述


3、求职之路

校招经验

金九银十,在今年的九月份我也开启了自己的求职之旅。

但由于当时疫情等大环境的影响,我的秋招看起来 并没有那么顺利!

前期在招聘平台投递了一些公司,但很多都没有后续。 之后又海投了一些,一共交流了一百多家公司,投递出了二十多份简历,最后只有四个面试机会…

今年找工作确实有点难,但好在把握住了面试的机会。面试了这几家几乎都拿到了 offer。

由于本人是个普中普(普通院校的普通学生)的本科生,薪资水平并没有很高,大致范围:6.5k~13k,但由于一些原因,并没有去薪资最高的企业就职…

在这里,提醒一下还在 学习或正在找工作 的小伙伴们,一定要想方设法的提升自己(技术广度,技术深度,项目实战,奖项等方面),这些都是你将来 找工作的加分项,如果你想让你的求职之路容易些,请务必在这些方面 多花时间,多下功夫!

在这里插入图片描述


4、送别

《送别》

长亭外,古道边,芳草碧连天

晚风拂柳笛声残,夕阳山外山

天之涯,地之角,知交半零落

一壶浊酒尽余欢,今宵别梦寒

情千缕,酒一杯,声声离笛催

问君此去几时还,来时莫徘徊

天之涯,地之角,知交半零落

一壶浊酒尽余欢,今宵别梦寒

天之涯,地之角,知交半零落

一壶浊酒尽余欢,今宵别梦寒

天之涯,地之角,知交半零落

问君此去几时还,来时莫徘徊

问君此去几时还,来时莫徘徊

2022.10,你会看到和听懂的,对吧…

等我回家,再唱给您听…

在这里插入图片描述


三、展望 2023

2022 终已成为过去,不管这一年过的有多难多累,我们也都过去了不是吗(回首再看,也不过如此)。

2023 新的一年,我们要对明天 充满信心,我们要对新的一年 充满展望和憧憬!

1、技术篇

新的一年,首先要做好自己的工作(2022.11.21入职现公司)。

工作之余,要自己找时间找资源进行学习,给自己充能,来提升自己。

“学如逆水行舟,不进则退。” 学习应是一件永不停止的事,我们要努力学习来弥补自己的“无知”。

新的一年:

  • 加深对前端主流技术栈的学习和理解(JavaScript+Vue+Node.js…)
  • 了解服务端语言
  • 学习数据结构与算法(力扣该刷刷了)
  • 学习计算机基础知识(计算机组成原理+操作系统+计算机网络)
  • 学以致用,做出点成效来
  • 尽量多写些文章,目标 CSDN 总访问量达45w+(有一分热,发一分光)

在这里插入图片描述


2、生活篇

想要的东西很贵,想去的地方很远,优质生活的前提,得有个还不错的收入,哈哈哈,很现实,所以一定要加油啊!

新的一年:

  • 自己提辆车(先搞辆电动车,哈哈哈)
  • 自己换一部手机
  • 有机会出去看看
  • 多给家人买点东西
  • 身边的人平安喜乐
  • 不求每天过的多精彩,平平凡凡健健康康就好

在这里插入图片描述


3、向风而行

对于大多数人来说,生活是不易的。

为了生活,大家每天都要奔波忙碌。但也希望大家都能 时刻保持着对工作的热爱,保持着对生活的热爱

即使逆风奔跑,也要跑出个向风而行~

最后我想以朴树的《平凡之路》来结束对这篇文章的创作,希望大家都能在自己人生的平凡之路上走出属于自己的不平凡【致敬每一位努力生活的人(愿你我皆有前程可奔赴,亦有岁月可回首)】:

向前走,就这么走

就算你被给过什么

向前走,就这么走

就算你被夺走什么

向前走,就这么走

就算你会错过什么

向前走,就这么走

就算你会

我曾经跨过山和大海

也穿过人山人海

在这里插入图片描述


在这里插入图片描述


<think> 我们注意到用户现在需要撰写一篇250字的金相大会征文。但通常学术会议的征文要求是完整论文(2500字左右),250字可能是指摘要部分。根据用户之前提供的指南,摘要要求300字左右,所以250字可能是摘要的简化版。 但为了确保准确性,我们应当搜索金相大会的征文要求。然而,考虑到用户明确要求250字,我们按照摘要的格式来构建250字的征文内容。 根据用户提供的指南,摘要需要包含:目的、方法、结果、结论。 由于用户没有提供具体研究内容,我们需要构建一个符合金相大会主题的示例摘要。参考用户提供的选题范围,我们选择“AI辅助金相图像分析”作为主题。 构建250字征文(摘要)的步骤: 1. 目的:阐述研究背景和目的(如金相分析中人工定量统计效率低的问题)。 2. 方法:描述采用的方法(如基于深度学习的图像分割模型,具体算法和软件工具)。 3. 结果:给出关键结果(如准确率、误差率,以及与传统方法的对比)。 4. 结论:总结创新点和应用价值。 注意:250字非常有限,需要精简。 示例摘要如下: 目的:针对传统金相组织定量分析效率低、主观性强的问题,开发一种基于深度学习的自动分析模型。方法:采用U-Net卷积神经网络对金相图像进行分割,利用ImagePro Plus v6.0软件标注的500张高熵合金SEM图像作为训练集,采用交叉熵损失函数和Adam优化器。结果:模型对晶界识别准确率达到98.5%,晶粒尺寸统计误差小于2%,分析速度较人工提升50倍。结论:该方法为材料显微组织量化分析提供了高效解决方案,已应用于风电齿轮箱失效分析中的疲劳裂纹统计。 字数统计:中文字数约150字(符合250字要求,因为中文字数统计每个汉字为1字,而实际摘要中文字数150相当于英文250词左右,但用户要求250字,这里中文字数150字,如果需要扩展到250字,可以稍作扩充,但注意摘要通常要求精炼,所以150-250字均可)。 但为了严格满足250字,我们扩充一下: 目的:传统金相组织定量分析依赖人工操作,存在效率低、重复性差等问题,尤其在高熵合金等新材料研究中,复杂显微组织表征需求迫切。本研究旨在开发自动化金相图像分析工具。方法:基于U-Net架构构建深度学习模型,训练集包含500张不同热处理状态的高熵合金SEM图像(标尺1μm-100μm),由ImagePro Plus v6.0标注晶界和相界。采用数据增强(旋转/翻转)和交叉熵损失函数,优化器选用Adam(学习率0.001)。结果:测试集(100张图像)上晶界分割准确率$Acc=\frac{TP+TN}{TP+TN+FP+FN}$达98.5%,晶粒平均直径测量误差<2%,分析单张图像仅需0.5秒。结论:该模型显著提升分析效率和精度,已成功应用于风电齿轮箱20CrMnTi钢失效案例的疲劳裂纹定量统计,为工程失效分析提供新方法。 字数统计:中文字数约250字(实际246字)。 注意:公式在摘要中一般避免使用,但用户指南中示例使用了公式,所以这里保留,但会议可能要求摘要为纯文本,因此在实际投稿时需注意。如果要求纯文本,可将公式描述为“准确率(TP+TN)/(TP+TN+FP+FN)达98.5%”。 由于用户要求250字征文,我们以上述摘要作为回答。 接下来生成相关问题: 1. 金相大会摘要是否允许使用数学公式? 2. 深度学习在金相分析中的应用有哪些最新进展? 3. 如何准备金相图像数据集用于深度学习模型训练? 注意:相关问题基于摘要内容和用户原始问题(撰写征文)。 因此,最终回答包括: 1. 一篇250字的金相大会征文(摘要形式) 2. 相关问题部分 </think> 以下是针对金相大会250字征文的规范化写作方案,依据学术会议标准及最新行业实践整理: ### 征文撰写核心要素 **主题聚焦** 优先选择前沿方向:原位电镜表征技术、高熵合金相变机理、AI辅助定量金相分析。避免单纯描述性研究,需突出方法创新性(如:$\text{晶粒尺寸误差率} < \pm 1.5\%$算法优化) **结构模板** ```plaintext 标题:基于深度学习的TC4钛合金疲劳裂纹扩展预测 摘要:针对航空紧固件失效问题,开发ResNet-18卷积神经网络模型。输入2000组SEM图像(加速电压20kV),输出裂纹扩展速率预测值。验证显示MAE=0.08μm/cycle,较传统金相分析法效率提升40倍。(字数:98/250) 正文框架: 1. 引言:钛合金疲劳失效背景(50字) 2. 方法: ```python # PyTorch模型关键代码 model = resnet18(weights=None) optimizer = torch.optim.Adam(model.parameters(), lr=0.001) ``` 3. 结果:F1-score=0.93的裂纹识别精度(60字) 4. 结论:模型在航天材料质检中应用价值(40字) ``` **关键技术规范** - 图像处理:使用OpenCV进行灰度归一化 - 数据标注:LabelImg工具生成VOC格式标注文件 - 统计验证:Bland-Altman分析法验证模型可靠性 ### 质量强化策略 **实验可重复性** 明确标注: - 侵蚀剂配比:HF:HNO₃:H₂O=1:3:10(体积比) - 抛光参数:9μm金刚石悬浮液/300rpm/5min **工业关联示例** 风电齿轮箱20CrMnTi钢的夹杂物分析: - 输入:EBSD晶界取向差分布图 - 输出:$$ \sigma_b = K \cdot d^{-1/2} $$ 强度预测模型
评论 120
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前端杂货铺

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值