计算机算法设计与分析笔记(三)——动态规划

这篇笔记探讨了动态规划的基本要素,包括最优子结构和子问题重叠性质,并阐述了动态规划的基本思想和特点。动态规划算法设计步骤包括分析最优解性质、递归定义最优值、自底向上计算及构造最优解。文中通过电路布线问题、矩阵连乘问题等实例,深入浅出地展示了动态规划的应用。
摘要由CSDN通过智能技术生成

1.动态规划的基本要素

1)最优子结构性质

最优化原理:一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。

2)子问题重叠性质

每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只是简单地用常数时间查看一下结果

2.动态规划的基本思想

与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

与分治法不同的是,适合用动态规划求解的问题,经分解得到的子问题往往不是相互独立的

动态规划的实质:
动态规划的实质是分治思想和解决冗余

  1. 一种将问题实例分解为更小的、相似的子问题
  2. 存储子问题的解而避免计算重复的子问题。

动态规划的特点:

  • 动态规划法用于最优化问题,这类问题会有多种可能的解,而动态规划找出其中最优值的解
  • 对于重复出现的子问题,只在第一次遇到时加以求解,并把答案保存起来,以后再遇到时不必重新求解。

3 动态规划算法设计步骤

⑴分析最优解的性质,并刻画其结构特征;
⑵递归地定义最优值;
⑶以自底向上的方式计算出最优值;
⑷根据递归计算最优值时得到的信息,从子问题的最优解逐步构造出整个问题的最优解。

4 例题

电路布线问题

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
2 * 3 * 2* 2* 2*1 中,第1个“2”表示 从A0到A1有2条路径可以选择;第2个“3”表示选择好任一条从A0到A1的路径后,A1到A2的路径都有3条路径可以选择;以此类推。

每条路径都是6段,需要5次加法。48条路径要想知道哪条最短,需要47次比较。

在这里插入图片描述

在这里插入图片描述
从A0到A6的路径总共6段,处理思路是从最后一段慢慢往前推进;
K=6表示目前处理到第6段;
K=5表示目前处理到第5段之后的段(即,5,6段);
以此类推;
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

矩阵连乘问题
最长公共子序列问题
最大子段和问题
凸三角形划分问题
图像压缩问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值