去雾算法(4) 基于单幅图像的快速去雾

本文介绍一种基于单幅图像的快速去雾算法,通过均值滤波估算环境光和全局大气光,简化了暗通道原理,实现简单且效果良好。算法关键步骤包括:计算透射率、环境光估计和全局大气光计算,并探讨了参数如eps和均值滤波半径对去雾效果的影响。
摘要由CSDN通过智能技术生成


前言

继续去雾算法的学习。这篇主要是基于单幅图像的快速去雾算法

论文原文

一、考虑t与图像暗淡之间的关系

暗通道论文中有这样一句话:
在这里插入图片描述
由于附加的大气光,一个有雾图像比一个无雾图像会更亮,且有雾图像的传输率更低。所以,有雾图像的暗通道在有雾区域有着更高的强度值。
经验证:
在这里插入图片描述

在这里插入图片描述
我们可以看到 在有雾的区域 透射率小于无雾区域

-----------》

	介质透射率t越大,则图像越暗淡,介质透射率越小,图像白色区域较多
	所以 无雾图像的介质透射率t 会比有雾图像的介质透射率更大些

二、基于单幅图像的快速去雾算法

1.概述

这个算法只用一次简单的均值滤波来估计环境光和全局大气光,实现起来比较简单耗时较少。
且去雾效果较好。

2.原理:

1、雾图成像模型

在这里插入图片描述
x是图像像素的空间坐标,H是观察到的有雾图像,F是待恢复的没有雾的图像,r是大气散射系数,d代表景物深度。A是全局大气光,正常情况下,A是一个全局常量,和x无关。

要计算F需要对退化物理模型进行转换。
在这里插入图片描述
L(x)定义为定义为环境光,它导致图像色彩和亮度的偏移。上式被改写为
在这里插入图片描述

2,环境光的计算

在这里插入图片描述
这里用 t(x) 代表e-rd ,称之为 介质透射率。进而退化物理模型可以写成:

	在这里,d(x)是图像深度,可以发现随着图像深度增加,透射率会下降。

在这里插入图片描述
然后得到该不等式
在这里插入图片描述
这一步主要是为了确定t(x)的一个范围,便于下一步确定。H(x)雾图 是一个3通道的矩阵。A全局大气光 是一个3*1的矩阵,t(x)介质透射率 是一个随坐标变化的数值。下一步对H(x)求三通道最小值,缩小范围
在这里插入图片描述
这一步求最小值的意义在于将三通道的矩阵数据,变为了一通道,上式的矩阵A全局大气光 也变为了A0 ,即单个数据
在这里插入图片描述
接着,对右侧数据进行求均值滤波操作。
要计算t(x)介质透射率 文中利用了窗口均值滤波计算 M(x)原图最小单通道 的均值,Mave(x) 和M(x)的尺寸一样 只是在M(x)的基础上求了均值
在这里插入图片描述

在这里插入图片描述
求均值后,原式变为 由不等式变为了等式。第三项是弥补的偏移值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值