论文地址:
Select-Mosaic: Data Augmentation Method for Dense Small Object Scenes
摘要:
数据增强是指通过对原始数据进行一系列变换或扩充,生成新的样本以增加数据的多样性和数量,从而有效提高模型的性能和鲁棒性。作为一种常见的数据增强方法,Mosaic数据增强技术通过将多个图像拼接在一起,增加训练数据的多样性和复杂性,可以减轻过拟合的风险。尽管Mosaic数据增强通过拼接图像能够在一般的检测任务取得优异的成绩,但对于特定场景下的检测任务仍然具有一定局限。本文针对航拍影像中检测分布大量密集小目标这一挑战,通过使用细粒度的区域选择策略改进的mosaic数据增强,提出Select-Mosaic数据增强方法。改进后的Select-Mosaic方法在处理密集小目标检测任务时表现出更优异的性能,显著提升了检测模型的准确性和稳定性。
方法: Select-Mosaic
图1 Select-Mosaic 示意图
如图1所示,Select-Mosaic数据增强方法示意图。
图(a)为mosaic数据增强,首先生成一个mosaic图像掩膜,然后在mosaic图像掩膜内部随机生成一个坐标作为拼接中心点。接着在数据中随机选取4张图片,沿着拼接中心点进行自由拼接,最后得到数据增强后的mosaic图像。
图(b)为select-mosaic数据增强,在拼接步骤之前先进行select操作,将指定的图像放入指定位置,接着进行选择性的拼接,具体而言,计算每张图像内部目标密度,找出目标密度最大的图像,计算4块掩膜的面积,找出面积最大的掩膜。将目标密度最大的图像放置在面积最大的掩膜内,将其它三张图像沿着拼接中心点在mosaic掩膜内部进行随机拼接。图2 Select-Mosaic 流程图
图2 Select-Mosaic 流程图
Select-Mosaic数据增强步骤如图2所示,其中(a)为mosaic数据增强步骤,(b)为Select-Mosaic数据增强步骤,可以看出与mosaic数据增强相比Select-Mosaic数据增强增加了“Calculate Target Density & Calculate Mask Area”这一操作可以增加密集小目标的场景出现的概率,使模型更为聚焦密集场景下的检测,从而提升检测效果。在模型训练过程中通常将Select-Mosaic与Mosaic混合使用,在使用Select-Mosaic时候,可以通过调节参数S控制区域选择操作的概率,当概率随机数是小于概率参数S,使用Select-Mosaic数据增强,在数据增强过程中执行区域选择操作。当概率随机数是大于概率参数S时ÿ