- 📚 博客主页:⭐️这是一只小逸白的博客鸭~⭐️
- 👉 欢迎 关注❤️点赞👍收藏⭐️评论📝
- 😜 小逸白正在备战实习,经常更新面试题和LeetCode题解,欢迎志同道合的朋友互相交流~
- 💙 若有问题请指正,记得关注哦,感谢~
往期文章 :
- LeetCode 剑指 Offer II 链表 专题总结
- LeetCode 剑指 Offer II 哈希表 专题总结
- LeetCode 剑指 Offer II 栈 专题总结
- LeetCode 剑指 Offer II 队列 专题总结
- LeetCode 剑指 Offer II 树(上) 专题总结
- LeetCode 剑指 Offer II 树(下) 专题总结
059. 数据流的第 K 大数值
题目:
设计一个找到数据流中第
k
大元素的类(class
)。注意是排序后的第k
大元素,不是第k
个不同的元素。
请实现KthLargest
类:
KthLargest(int k, int[] nums)
使用整数 k 和整数流nums
初始化对象。int add(int val)
将 val 插入数据流nums
后,返回当前数据流中第k
大的元素。
示例:
输入:
[“KthLargest”, “add”, “add”, “add”, “add”, “add”]
[[3, [4, 5, 8, 2]], [3], [5], [10], [9], [4]]
输出:
[null, 4, 5, 5, 8, 8]
解释:
KthLargest kthLargest = new KthLargest(3, [4, 5, 8, 2]);
kthLargest.add(3); // return 4
kthLargest.add(5); // return 5
kthLargest.add(10); // return 5
kthLargest.add(9); // return 8
kthLargest.add(4); // return 8
提示:
1 <= k <= 104
0 <= nums.length <= 104
-104 <= nums[i] <= 104
-104 <= val <= 104
- 最多调用
add
方法104
次 - 题目数据保证,在查找第
k
大元素时,数组中至少有k
个元素
思路:
创建一个小顶堆,将所有元素过一遍,剩下的
k
个元素,堆顶就是 第 K 大数值
KthLargest(int k, vector<int>& nums)
:初始化时nums
数组不一定大于k
个元素,有可能k-1
,当add()
后刚好是k个
遍历数组,将所有元素加入堆中,通过add()
入堆
add()
:直接入堆,如果长度大于k
,就将堆顶弹出
class KthLargest {
public:
priority_queue<int, vector<int>, greater<int> > pq;
int k;
KthLargest(int k, vector<int>& nums) {
this->k = k;
for(auto& i : nums) {
//直接调用add方法
add(i);
// 先入堆,然后再出就不用调用add
//pq.push(i);
}
//while(pq.size() > k) pq.pop();
}
int add(int val) {
pq.push(val);
if(pq.size() > k) pq.pop();
return pq.top();
}
};
060. 出现频率最高的 k 个数字
题目:
给定一个整数数组
nums
和一个整数k
,请返回其中出现频率前k
高的元素。可以按 任意顺序 返回答案。
示例:
输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]
提示:
-
1 <= nums.length <= 105
-
k
的取值范围是[1, 数组中不相同的元素的个数]
-
题目数据保证答案唯一,换句话说,数组中前
k
个高频元素的集合是唯一的 -
进阶:所设计算法的时间复杂度 必须 优于
O(n log n)
,其中n
是数组大小。
思路:
可以用小顶堆
pair<int,int>
,(数字,出现次数)求解,自定义排序方法,以数字出现次数比较大小
- 用
map
统计数字出现次数- 遍历
map
将[key,val]
加入堆中,如果超过k
个元素就出堆,维护堆中只能有k
个元素
class Solution {
public:
// 自定义排序,按照出现次数排序
static bool cmp(pair<int, int>& m, pair<int, int>& n) {
return m.second > n.second;
}
vector<int> topKFrequent(vector<int>& nums, int k) {
/*
// 也可以这样使用lambda 定义, &cmp 有无引用符号的区别
auto cmp = [](pair<int, int>& m, pair<int, int>& n) {
return m.second > n.second;
};
priority_queue<pair<int, int>, vector<pair<int, int>>, decltype(cmp)> pq(cmp);*/
// 小顶堆
priority_queue<pair<int, int>, vector<pair<int, int>>, decltype(&cmp)> pq(cmp);
// 两种插入方法:
// 1. pq.emplace(key,val);
// 2. pq.push(pair(key,value));
unordered_map<int, int> map;
for(auto& i : nums) {
map[i]++;
}
for(auto& [key, value] : map) {
pq.emplace(key,value);
if(pq.size() > k) pq.pop();
}
vector<int> res;
while(!pq.empty()) {
res.push_back(pq.top().first);
pq.pop();
}
return res;
}
};
061. 和最小的 k 个数对
题目:
给定两个以升序排列的整数数组
nums1
和nums2
, 以及一个整数k
。
定义一对值(u,v)
,其中第一个元素来自nums1
,第二个元素来自nums2
。
请找到和最小的k
个数对(u1,v1), (u2,v2) ... (uk,vk)
。
示例:
输入: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
输出: [1,2],[1,4],[1,6]
解释: 返回序列中的前 3 对数:
[1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
提示:
1 <= nums1.length, nums2.length <= 104
-109 <= nums1[i], nums2[i] <= 109
nums1, nums2
均为升序排列1 <= k <= 1000
思路:
将nums1可能的答案入堆,对应nums2的首元素下标为 0,[index1,0]配对入堆
而后面一取一个最小值[index1, index2],就将 index2 的右边元素配对index1加入堆,这样可以保证堆里元素都是目前最小的
如下图: 此时堆中初始化有三个元素,{[0,0],[1,0], [2,0] }
- 此时[0,0]最小,出堆后再将[0,1]入堆
- 此时[0,1]最小,出堆后再将[0,2]入堆
- 堆中元素为:{[0,2],[1,0], [2,0] },不断重复k此就可得到答案
class Solution {
public:
vector<vector<int>> kSmallestPairs(vector<int>& nums1, vector<int>& nums2, int k) {
// 小顶堆,存下标,比较的时候用数组比较
// 要引用 nums1, nums2,所以不能像上一题一样在类外定义
auto cmp = [&](pair<int, int>& m, pair<int, int>& n) {
return num![请添加图片描述](https://img-blog.csdnimg.cn/4898a8aa15804025b5893ed4b9a82311.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBA5LiA5Y-q5bCP6YC455m9,size_20,color_FFFFFF,t_70,g_se,x_16)
s1[m.first] + nums2[m.second] > nums1[n.first] + nums2[n.second];
};
// 小顶堆,如果在类外 static定义cmp的话,decltype(&cmp),要加引用符号&
priority_queue<pair<int, int>, vector<pair<int, int> >, decltype(cmp)> pq(cmp);
vector<vector<int>> res;
int n = nums1.size();
int m = nums2.size();
// 将nums1可能的答案入堆,后面只移动nums2的元素就可以了
for(int i = 0; i < min(n, k); i++) {
// nums1 可能是答案的只有 前 min(n, k) 个
pq.emplace(i,0);
//pq.push(pair<i,0>);
}
while(k-- && !pq.empty()) {
auto top = pq.top();
pq.pop();
// 直接加入二维数组
res.push_back({nums1[top.first], nums2[top.second]});
// nums2 数组下标不越界就加入堆
if(top.second + 1 < m) {
pq.emplace(top.first, top.second + 1);
}
}
return res;
}
};
378. 有序矩阵中第 K 小的元素(此题与第三题类似)
题目:
给你一个
n x n
矩阵matrix
,其中每行和每列元素均按升序排序,找到矩阵中第k
小的元素。
请注意,它是 排序后 的第k
小元素,而不是第k
个 不同 的元素。
示例:
输入:matrix = [[1,5,9],[10,11,13],[12,13,15]], k = 8
输出:13
解释:矩阵中的元素为 [1,5,9,10,11,12,13,13,15],第 8 小元素是 13
提示:
n == matrix.length
n == matrix[i].length
1 <= n <= 300
-109 <= matrix[i][j] <= 109
- 题目数据 保证
matrix
中的所有行和列都按 非递减顺序 排列 1 <= k <= n2
思路:
还是小顶堆,比较的是二维数组的值,存储数组的行列下标
pair<int,int>
(行,列)
构图一下,这就是初始化一列,然后按行扫到行尾,堆大小<=
行数
- 将每一行的行首入堆
[row,0]
,遍历前k-1
个元素,- 遍历当前元素时,代表当前元素是当前所有行中最小的,出堆后将右边元素入堆
- 剩下的堆中,堆顶就是第
k
小的元素
class Solution {
public:
int kthSmallest(vector<vector<int>>& matrix, int k) {
// 思路: 先存入第一列,然后每取一个数(出堆)后就加入这个数的右边数(入堆)
auto cmp = [&](pair<int, int>& m, pair<int, int>& n) {
return matrix[m.first][m.second] > matrix[n.first][n.second];
};
// 小顶堆
priority_queue<pair<int, int>, vector<pair<int, int>>, decltype(cmp)> pq(cmp);
int n = matrix.size();
int m = matrix[0].size();
// 添加每一行的行首
for(int i = 0; i < n; i++) {
pq.emplace(i, 0);
}
//遍历前 k-1 个
for(int i = 0; i < k-1; i++) {
auto top = pq.top();
pq.pop();
// second的下一个下标是否数组越界
if(top.second + 1 < m) {
pq.emplace(top.first, top.second + 1);
}
}
// 返回第 K 个
return matrix[pq.top().first][pq.top().second];
}
};