题目链接
题意: 自行车轮被钉子扎了,有n个钉子,轮胎周长m,有两种补丁,长度
a,b,补丁不能剪短,求覆盖所有的钉子需要多长的补丁(tips:在2 5 处有两个钉子,补丁长度为5,则只需要一个补丁即可)。
算法: 考虑环形dp,首先需要考虑这是一个圈,并不是直线型的,所以一般考虑把前n个再接到后面去,求任意一个长度为n 的序列的答案,这个过程需要枚举起点操作。通过数组a来存储钉子的位置,存完n个以后,用a[n+i]=a[i]+m在后面再次储存n个位置,既可完成顺延操作。
然后进行dp,枚举一个起点,用f[i]储存起点到点 i 最少需要多少补丁
对于每一个f[i],我们通过检索a[i]之前长度为a , b 距离以内的点求 min(f[i],f[j]+a)和min(f[i],f[j]+b);即可,然后维护一个最小值ans、最后输出即可
#include <iostream>
#include<bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f3f3f3f
#define mem(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&(-x)
#define PII pair<int,int>
#define PLL pair<ll,ll>
#define PI acos(-1)
#define pb push_back
using namespace std;
int n, m, t1, t2;
int f[3000], a[3000];
int main() {
while(~(scanf("%d%d%d%d",&n,&m,&t1,&t2))){
for(int i=1;i<=n;i++){
cin>>a[i];
int x=i;
a[n+i]=a[i]+m;
}
memset(f,0,sizeof(f));
int ans=1e9;
for(int k=1;k<=n;k++){
f[k-1]=0;
f[k]=min(t1, t2);
for (int i=k+1;i<=k+n-1;i++) {
f[i]=f[i-1]+min(t1,t2);
for(int j=i-1;j>=k;j--) {
if (a[i]-a[j]<=t1)
f[i]=min(f[i],f[j-1]+t1);
if (a[i]-a[j]<=t2)
f[i]=min(f[i],f[j-1]+t2);
if (a[i]-a[j]>t1&&a[i]-a[j]>t2) break;
}
}
ans=min(f[k+n-1],ans);
}
cout << ans << endl;
}
}