环形dp Patches

这篇博客介绍了如何使用环形动态规划解决一个自行车轮胎修补问题。题目中,自行车轮胎被n个钉子刺穿,轮胎周长为m,有两种长度为a和b的补丁可供选择。博主通过建立数学模型,利用环形DP的方法,枚举起点并更新状态数组,找到覆盖所有钉子所需的最短补丁总长度。最终,博主给出了C++代码实现并输出了答案。
摘要由CSDN通过智能技术生成

题目链接
题意: 自行车轮被钉子扎了,有n个钉子,轮胎周长m,有两种补丁,长度
a,b,补丁不能剪短,求覆盖所有的钉子需要多长的补丁(tips:在2 5 处有两个钉子,补丁长度为5,则只需要一个补丁即可)。
算法: 考虑环形dp,首先需要考虑这是一个圈,并不是直线型的,所以一般考虑把前n个再接到后面去,求任意一个长度为n 的序列的答案,这个过程需要枚举起点操作。通过数组a来存储钉子的位置,存完n个以后,用a[n+i]=a[i]+m在后面再次储存n个位置,既可完成顺延操作。
然后进行dp,枚举一个起点,用f[i]储存起点到点 i 最少需要多少补丁
对于每一个f[i],我们通过检索a[i]之前长度为a , b 距离以内的点求 min(f[i],f[j]+a)和min(f[i],f[j]+b);即可,然后维护一个最小值ans、最后输出即可

#include <iostream>
#include<bits/stdc++.h>
#define ll long long
#define ull unsigned long long
#define INF 0x3f3f3f3f
#define inf 0x3f3f3f3f3f3f3f3f
#define mem(a,b) memset(a,b,sizeof(a))
#define lowbit(x) x&(-x)
#define PII pair<int,int>
#define PLL pair<ll,ll>
#define PI acos(-1)
#define pb push_back
using namespace std;
int n, m, t1, t2;
int f[3000], a[3000];
int main() {
    while(~(scanf("%d%d%d%d",&n,&m,&t1,&t2))){
        for(int i=1;i<=n;i++){
            cin>>a[i];
            int x=i;
            a[n+i]=a[i]+m;
        }
        memset(f,0,sizeof(f));
        int ans=1e9;
        for(int k=1;k<=n;k++){
            f[k-1]=0;
            f[k]=min(t1, t2);
            for (int i=k+1;i<=k+n-1;i++) {
                f[i]=f[i-1]+min(t1,t2);
                for(int j=i-1;j>=k;j--) {
                    if (a[i]-a[j]<=t1)
                        f[i]=min(f[i],f[j-1]+t1);
                    if (a[i]-a[j]<=t2)
                        f[i]=min(f[i],f[j-1]+t2);
                    if (a[i]-a[j]>t1&&a[i]-a[j]>t2) break;
                }
            }
            ans=min(f[k+n-1],ans);
        }
        cout << ans << endl;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值