概念
随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。何凯明提出的深度残差网络resnet,残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。 于是,残差块(residual blocks)便诞生了。
Bottleneck 层(残差块):深度残差网络(ResNet)中引入的一种重要组件,用于降低模型的计算复杂度并提升特征提取能力。
Bottleneck结构 它由三个主要部分组成:
1x1 卷积层:用于降低输入的通道数(维度),以减少计算复杂度。这一步主要是为了在保持特征质量的同时减少维度。
3x3 卷积层:经过 1x1 卷积层降维后,使用 3x3 卷积核进行特征提取。这一步负责增强特征表示能力。
1x1 卷积层:通过 1x1 卷积层将通道数恢复到原始维度。这一步是为了恢复特征的维度,并提供给下一层使用。
下图结构是在ResNet网络中的结构。先通过1x1进行降维,使用3x3进行卷积操作,最后使用1x1升维。