残差网络resnet--概念、作用、原理、优缺点及示例代码+vgg介绍

概念

  随着我们设计越来越深的网络,深刻理解“新添加的层如何提升神经网络的性能”变得至关重要。何凯明提出的深度残差网络resnet,残差网络的核心思想是:每个附加层都应该更容易地包含原始函数作为其元素之一。 于是,残差块(residual blocks)便诞生了。

                        

 Bottleneck 层(残差块):深度残差网络(ResNet)中引入的一种重要组件,用于降低模型的计算复杂度并提升特征提取能力。

 Bottleneck结构 它由三个主要部分组成:

        1x1 卷积层:用于降低输入的通道数(维度),以减少计算复杂度。这一步主要是为了在保持特征质量的同时减少维度。

        3x3 卷积层:经过 1x1 卷积层降维后,使用 3x3 卷积核进行特征提取。这一步负责增强特征表示能力。

        1x1 卷积层:通过 1x1 卷积层将通道数恢复到原始维度。这一步是为了恢复特征的维度,并提供给下一层使用。

 下图结构是在ResNet网络中的结构。先通过1x1进行降维,使用3x3进行卷积操作,最后使用1x1升维。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值